Package: factoextra 1.0.7.999
factoextra: Extract and Visualize the Results of Multivariate Data Analyses
Provides some easy-to-use functions to extract and visualize the output of multivariate data analyses, including 'PCA' (Principal Component Analysis), 'CA' (Correspondence Analysis), 'MCA' (Multiple Correspondence Analysis), 'FAMD' (Factor Analysis of Mixed Data), 'MFA' (Multiple Factor Analysis) and 'HMFA' (Hierarchical Multiple Factor Analysis) functions from different R packages. It contains also functions for simplifying some clustering analysis steps and provides 'ggplot2' - based elegant data visualization.
Authors:
factoextra_1.0.7.999.tar.gz
factoextra_1.0.7.999.zip(r-4.5)factoextra_1.0.7.999.zip(r-4.4)factoextra_1.0.7.999.zip(r-4.3)
factoextra_1.0.7.999.tgz(r-4.4-any)factoextra_1.0.7.999.tgz(r-4.3-any)
factoextra_1.0.7.999.tar.gz(r-4.5-noble)factoextra_1.0.7.999.tar.gz(r-4.4-noble)
factoextra_1.0.7.999.tgz(r-4.4-emscripten)factoextra_1.0.7.999.tgz(r-4.3-emscripten)
factoextra.pdf |factoextra.html✨
factoextra/json (API)
NEWS
# Install 'factoextra' in R: |
install.packages('factoextra', repos = c('https://kassambara.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/kassambara/factoextra/issues
- decathlon2 - Athletes' performance in decathlon
- housetasks - House tasks contingency table
- multishapes - A dataset containing clusters of multiple shapes
- poison - Poison
Last updated 5 years agofrom:1689fc74b9. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 09 2024 |
R-4.5-win | NOTE | Oct 09 2024 |
R-4.5-linux | NOTE | Oct 09 2024 |
R-4.4-win | NOTE | Oct 09 2024 |
R-4.4-mac | NOTE | Oct 09 2024 |
R-4.3-win | OK | Oct 09 2024 |
R-4.3-mac | OK | Oct 09 2024 |
Exports:eclustfacto_summarizefvizfviz_addfviz_cafviz_ca_biplotfviz_ca_colfviz_ca_rowfviz_clusterfviz_contribfviz_cos2fviz_dendfviz_distfviz_eigfviz_ellipsesfviz_famdfviz_famd_indfviz_famd_varfviz_gap_statfviz_hmfafviz_hmfa_groupfviz_hmfa_indfviz_hmfa_ind_starplotfviz_hmfa_quali_biplotfviz_hmfa_quali_varfviz_hmfa_quanti_varfviz_hmfa_varfviz_mcafviz_mca_biplotfviz_mca_indfviz_mca_varfviz_mclustfviz_mclust_bicfviz_mfafviz_mfa_axesfviz_mfa_groupfviz_mfa_indfviz_mfa_ind_starplotfviz_mfa_quali_biplotfviz_mfa_quali_varfviz_mfa_quanti_varfviz_mfa_varfviz_nbclustfviz_pcafviz_pca_biplotfviz_pca_contribfviz_pca_indfviz_pca_varfviz_screeplotfviz_silhouetteget_caget_ca_colget_ca_rowget_clust_tendencyget_distget_eigget_eigenvalueget_famdget_famd_indget_famd_varget_hmfaget_hmfa_groupget_hmfa_indget_hmfa_partialget_hmfa_quali_varget_hmfa_quanti_varget_hmfa_varget_mcaget_mca_indget_mca_varget_mfaget_mfa_groupget_mfa_indget_mfa_partial_axesget_mfa_quali_varget_mfa_quanti_varget_mfa_varget_pcaget_pca_indget_pca_varhcuthkmeanshkmeans_tree
Dependencies:abindbackportsbase64encbootbroombslibcachemcarcarDatacliclustercolorspacecorrplotcowplotcpp11crosstalkdendextendDerivdigestdoBydplyrDTellipseemmeansestimabilityevaluateFactoMineRfansifarverfastmapflashClustfontawesomeFormulafsgenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehighrhtmltoolshtmlwidgetshttpuvisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevalleapslifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigplyrpolynompromisespurrrquantregR6rappdirsRColorBrewerRcppRcppEigenreshape2rlangrmarkdownrstatixsassscalesscatterplot3dSparseMstringistringrsurvivaltibbletidyrtidyselecttinytexutf8vctrsviridisviridisLitewithrxfunyaml