Title: | Visualization of a Correlation Matrix using 'ggplot2' |
---|---|
Description: | The 'ggcorrplot' package can be used to visualize easily a correlation matrix using 'ggplot2'. It provides a solution for reordering the correlation matrix and displays the significance level on the plot. It also includes a function for computing a matrix of correlation p-values. |
Authors: | Alboukadel Kassambara [aut, cre], Indrajeet Patil [ctb] (<https://orcid.org/0000-0003-1995-6531>, @patilindrajeets) |
Maintainer: | Alboukadel Kassambara <[email protected]> |
License: | GPL-2 |
Version: | 0.1.4.999 |
Built: | 2024-12-22 03:17:54 UTC |
Source: | https://github.com/kassambara/ggcorrplot |
ggcorrplot(): A graphical display of a correlation matrix using ggplot2.
cor_pmat(): Compute a correlation matrix p-values.
ggcorrplot( corr, method = c("square", "circle"), type = c("full", "lower", "upper"), ggtheme = ggplot2::theme_minimal, title = "", show.legend = TRUE, legend.title = "Corr", show.diag = NULL, colors = c("blue", "white", "red"), outline.color = "gray", hc.order = FALSE, hc.method = "complete", lab = FALSE, lab_col = "black", lab_size = 4, p.mat = NULL, sig.level = 0.05, insig = c("pch", "blank"), pch = 4, pch.col = "black", pch.cex = 5, tl.cex = 12, tl.col = "black", tl.srt = 45, digits = 2, as.is = FALSE ) cor_pmat(x, ...)
ggcorrplot( corr, method = c("square", "circle"), type = c("full", "lower", "upper"), ggtheme = ggplot2::theme_minimal, title = "", show.legend = TRUE, legend.title = "Corr", show.diag = NULL, colors = c("blue", "white", "red"), outline.color = "gray", hc.order = FALSE, hc.method = "complete", lab = FALSE, lab_col = "black", lab_size = 4, p.mat = NULL, sig.level = 0.05, insig = c("pch", "blank"), pch = 4, pch.col = "black", pch.cex = 5, tl.cex = 12, tl.col = "black", tl.srt = 45, digits = 2, as.is = FALSE ) cor_pmat(x, ...)
corr |
the correlation matrix to visualize |
method |
character, the visualization method of correlation matrix to be used. Allowed values are "square" (default), "circle". |
type |
character, "full" (default), "lower" or "upper" display. |
ggtheme |
ggplot2 function or theme object. Default value is 'theme_minimal'. Allowed values are the official ggplot2 themes including theme_gray, theme_bw, theme_minimal, theme_classic, theme_void, .... Theme objects are also allowed (e.g., 'theme_classic()'). |
title |
character, title of the graph. |
show.legend |
logical, if TRUE the legend is displayed. |
legend.title |
a character string for the legend title. lower triangular, upper triangular or full matrix. |
show.diag |
NULL or logical, whether display the correlation
coefficients on the principal diagonal. If |
colors |
a vector of 3 colors for low, mid and high correlation values. |
outline.color |
the outline color of square or circle. Default value is "gray". |
hc.order |
logical value. If TRUE, correlation matrix will be hc.ordered using hclust function. |
hc.method |
the agglomeration method to be used in hclust (see ?hclust). |
lab |
logical value. If TRUE, add correlation coefficient on the plot. |
lab_col , lab_size
|
size and color to be used for the correlation coefficient labels. used when lab = TRUE. |
p.mat |
matrix of p-value. If NULL, arguments sig.level, insig, pch, pch.col, pch.cex is invalid. |
sig.level |
significant level, if the p-value in p-mat is bigger than sig.level, then the corresponding correlation coefficient is regarded as insignificant. |
insig |
character, specialized insignificant correlation coefficients, "pch" (default), "blank". If "blank", wipe away the corresponding glyphs; if "pch", add characters (see pch for details) on corresponding glyphs. |
pch |
add character on the glyphs of insignificant correlation coefficients (only valid when insig is "pch"). Default value is 4. |
pch.col , pch.cex
|
the color and the cex (size) of pch (only valid when insig is "pch"). |
tl.cex , tl.col , tl.srt
|
the size, the color and the string rotation of text label (variable names). |
digits |
Decides the number of decimal digits to be displayed (Default: '2'). |
as.is |
A logical passed to |
x |
numeric matrix or data frame |
... |
other arguments to be passed to the function cor.test. |
ggcorrplot(): Returns a ggplot2
cor_pmat(): Returns a matrix containing the p-values of correlations
# Compute a correlation matrix data(mtcars) corr <- round(cor(mtcars), 1) corr # Compute a matrix of correlation p-values p.mat <- cor_pmat(mtcars) p.mat # Visualize the correlation matrix # -------------------------------- # method = "square" or "circle" ggcorrplot(corr) ggcorrplot(corr, method = "circle") # Reordering the correlation matrix # -------------------------------- # using hierarchical clustering ggcorrplot(corr, hc.order = TRUE, outline.color = "white") # Types of correlogram layout # -------------------------------- # Get the lower triangle ggcorrplot(corr, hc.order = TRUE, type = "lower", outline.color = "white" ) # Get the upeper triangle ggcorrplot(corr, hc.order = TRUE, type = "upper", outline.color = "white" ) # Change colors and theme # -------------------------------- # Argument colors ggcorrplot(corr, hc.order = TRUE, type = "lower", outline.color = "white", ggtheme = ggplot2::theme_gray, colors = c("#6D9EC1", "white", "#E46726") ) # Add correlation coefficients # -------------------------------- # argument lab = TRUE ggcorrplot(corr, hc.order = TRUE, type = "lower", lab = TRUE, ggtheme = ggplot2::theme_dark(), ) # Add correlation significance level # -------------------------------- # Argument p.mat # Barring the no significant coefficient ggcorrplot(corr, hc.order = TRUE, type = "lower", p.mat = p.mat ) # Leave blank on no significant coefficient ggcorrplot(corr, p.mat = p.mat, hc.order = TRUE, type = "lower", insig = "blank" ) # Changing number of digits for correlation coeffcient # -------------------------------- ggcorrplot(cor(mtcars), type = "lower", insig = "blank", lab = TRUE, digits = 3 )
# Compute a correlation matrix data(mtcars) corr <- round(cor(mtcars), 1) corr # Compute a matrix of correlation p-values p.mat <- cor_pmat(mtcars) p.mat # Visualize the correlation matrix # -------------------------------- # method = "square" or "circle" ggcorrplot(corr) ggcorrplot(corr, method = "circle") # Reordering the correlation matrix # -------------------------------- # using hierarchical clustering ggcorrplot(corr, hc.order = TRUE, outline.color = "white") # Types of correlogram layout # -------------------------------- # Get the lower triangle ggcorrplot(corr, hc.order = TRUE, type = "lower", outline.color = "white" ) # Get the upeper triangle ggcorrplot(corr, hc.order = TRUE, type = "upper", outline.color = "white" ) # Change colors and theme # -------------------------------- # Argument colors ggcorrplot(corr, hc.order = TRUE, type = "lower", outline.color = "white", ggtheme = ggplot2::theme_gray, colors = c("#6D9EC1", "white", "#E46726") ) # Add correlation coefficients # -------------------------------- # argument lab = TRUE ggcorrplot(corr, hc.order = TRUE, type = "lower", lab = TRUE, ggtheme = ggplot2::theme_dark(), ) # Add correlation significance level # -------------------------------- # Argument p.mat # Barring the no significant coefficient ggcorrplot(corr, hc.order = TRUE, type = "lower", p.mat = p.mat ) # Leave blank on no significant coefficient ggcorrplot(corr, p.mat = p.mat, hc.order = TRUE, type = "lower", insig = "blank" ) # Changing number of digits for correlation coeffcient # -------------------------------- ggcorrplot(cor(mtcars), type = "lower", insig = "blank", lab = TRUE, digits = 3 )