Title: | 'ggplot2' Based Publication Ready Plots |
---|---|
Description: | The 'ggplot2' package is excellent and flexible for elegant data visualization in R. However the default generated plots requires some formatting before we can send them for publication. Furthermore, to customize a 'ggplot', the syntax is opaque and this raises the level of difficulty for researchers with no advanced R programming skills. 'ggpubr' provides some easy-to-use functions for creating and customizing 'ggplot2'- based publication ready plots. |
Authors: | Alboukadel Kassambara [aut, cre] |
Maintainer: | Alboukadel Kassambara <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.6.0.999 |
Built: | 2025-01-03 03:28:30 UTC |
Source: | https://github.com/kassambara/ggpubr |
add summary statistics onto a ggplot.
add_summary( p, fun = "mean_se", error.plot = "pointrange", color = "black", fill = "white", group = 1, width = NULL, shape = 19, size = 1, linetype = 1, show.legend = NA, ci = 0.95, data = NULL, position = position_dodge(0.8) ) mean_se_(x, error.limit = "both") mean_sd(x, error.limit = "both") mean_ci(x, ci = 0.95, error.limit = "both") mean_range(x, error.limit = "both") median_iqr(x, error.limit = "both") median_hilow_(x, ci = 0.95, error.limit = "both") median_q1q3(x, error.limit = "both") median_mad(x, error.limit = "both") median_range(x, error.limit = "both")
add_summary( p, fun = "mean_se", error.plot = "pointrange", color = "black", fill = "white", group = 1, width = NULL, shape = 19, size = 1, linetype = 1, show.legend = NA, ci = 0.95, data = NULL, position = position_dodge(0.8) ) mean_se_(x, error.limit = "both") mean_sd(x, error.limit = "both") mean_ci(x, ci = 0.95, error.limit = "both") mean_range(x, error.limit = "both") median_iqr(x, error.limit = "both") median_hilow_(x, ci = 0.95, error.limit = "both") median_q1q3(x, error.limit = "both") median_mad(x, error.limit = "both") median_range(x, error.limit = "both")
p |
a ggplot on which you want to add summary statistics. |
fun |
a function that is given the complete data and should return a data frame with variables ymin, y, and ymax. Allowed values are one of: "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range". |
error.plot |
plot type used to visualize error. Allowed values are one of
|
color |
point or outline color. |
fill |
fill color. Used only whne |
group |
grouping variable. Allowed values are 1 (for one group) or a character vector specifying the name of the grouping variable. Used only for adding statistical summary per group. |
width |
numeric value between 0 and 1 specifying bar or box width.
Example width = 0.8. Used only when |
shape |
point shape. Allowed values can be displayed using the function
|
size |
numeric value in [0-1] specifying point and line size. |
linetype |
line type. |
show.legend |
logical. Should this layer be included in the legends? NA,
the default, includes if any aesthetics are mapped. |
ci |
the percent range of the confidence interval (default is 0.95). |
data |
a |
position |
position adjustment, either as a string, or the result of a call to a position adjustment function. Used to adjust position for multiple groups. |
x |
a numeric vector. |
error.limit |
allowed values are one of ("both", "lower", "upper", "none") specifying whether to plot the lower and/or the upper limits of error interval. |
add_summary()
: add summary statistics onto a ggplot.
mean_se_()
: returns the mean
and the error limits defined by the
standard error
. We used the name mean_se_
() to avoid masking mean_se
().
mean_sd()
: returns the mean
and the error limits defined by the
standard deviation
.
mean_ci()
: returns the mean
and the error limits defined by the
confidence interval
.
mean_range()
: returns the mean
and the error limits defined by the
range = max - min
.
median_iqr()
: returns the median
and the error limits
defined by the interquartile range
.
median_hilow_()
: computes the sample median and a selected pair of
outer quantiles having equal tail areas. This function is a reformatted
version of Hmisc::smedian.hilow()
. The confidence limits are computed
as follow: lower.limits = (1-ci)/2
percentiles; upper.limits =
(1+ci)/2
percentiles. By default (ci = 0.95
), the 2.5th and the
97.5th percentiles are used as the lower and the upper confidence limits,
respectively. If you want to use the 25th and the 75th percentiles as the
confidence limits, then specify ci = 0.5
or use the function
median_q1q3()
.
median_q1q3()
: computes the sample median and, the 25th and 75th
percentiles. Wrapper around the function median_hilow_()
using
ci = 0.5
.
median_mad()
: returns the median
and the error limits
defined by the median absolute deviation
.
median_range()
: returns the median
and the error limits
defined by the range = max - min
.
# Basic violin plot p <- ggviolin(ToothGrowth, x = "dose", y = "len", add = "none") p # Add mean_sd add_summary(p, "mean_sd")
# Basic violin plot p <- ggviolin(ToothGrowth, x = "dose", y = "len", add = "none") p # Add mean_sd add_summary(p, "mean_sd")
Annotate figures including: i) ggplots, ii) arranged ggplots from
ggarrange()
, grid.arrange()
and
plot_grid()
.
annotate_figure( p, top = NULL, bottom = NULL, left = NULL, right = NULL, fig.lab = NULL, fig.lab.pos = c("top.left", "top", "top.right", "bottom.left", "bottom", "bottom.right"), fig.lab.size, fig.lab.face )
annotate_figure( p, top = NULL, bottom = NULL, left = NULL, right = NULL, fig.lab = NULL, fig.lab.pos = c("top.left", "top", "top.right", "bottom.left", "bottom", "bottom.right"), fig.lab.size, fig.lab.face )
p |
(arranged) ggplots. |
top , bottom , left , right
|
optional string, or grob. |
fig.lab |
figure label (e.g.: "Figure 1"). |
fig.lab.pos |
position of the figure label, can be one of "top.left", "top", "top.right", "bottom.left", "bottom", "bottom.right". Default is "top.left". |
fig.lab.size |
optional size of the figure label. |
fig.lab.face |
optional font face of the figure label. Allowed values include: "plain", "bold", "italic", "bold.italic". |
Alboukadel Kassambara [email protected]
data("ToothGrowth") df <- ToothGrowth df$dose <- as.factor(df$dose) # Create some plots # :::::::::::::::::::::::::::::::::::::::::::::::::: # Box plot bxp <- ggboxplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Dot plot dp <- ggdotplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Density plot dens <- ggdensity(df, x = "len", fill = "dose", palette = "jco") # Arrange and annotate # :::::::::::::::::::::::::::::::::::::::::::::::::: figure <- ggarrange(bxp, dp, dens, ncol = 2, nrow = 2) annotate_figure(figure, top = text_grob("Visualizing Tooth Growth", color = "red", face = "bold", size = 14), bottom = text_grob("Data source: \n ToothGrowth data set", color = "blue", hjust = 1, x = 1, face = "italic", size = 10), left = text_grob("Figure arranged using ggpubr", color = "green", rot = 90), right = text_grob(bquote("Superscript: ("*kg~NH[3]~ha^-1~yr^-1*")"), rot = 90), fig.lab = "Figure 1", fig.lab.face = "bold" )
data("ToothGrowth") df <- ToothGrowth df$dose <- as.factor(df$dose) # Create some plots # :::::::::::::::::::::::::::::::::::::::::::::::::: # Box plot bxp <- ggboxplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Dot plot dp <- ggdotplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Density plot dens <- ggdensity(df, x = "len", fill = "dose", palette = "jco") # Arrange and annotate # :::::::::::::::::::::::::::::::::::::::::::::::::: figure <- ggarrange(bxp, dp, dens, ncol = 2, nrow = 2) annotate_figure(figure, top = text_grob("Visualizing Tooth Growth", color = "red", face = "bold", size = 14), bottom = text_grob("Data source: \n ToothGrowth data set", color = "blue", hjust = 1, x = 1, face = "italic", size = 10), left = text_grob("Figure arranged using ggpubr", color = "green", rot = 90), right = text_grob(bquote("Superscript: ("*kg~NH[3]~ha^-1~yr^-1*")"), rot = 90), fig.lab = "Figure 1", fig.lab.face = "bold" )
Transform the output of
arrangeGrob()
and
grid.arrange()
to a an object of class
ggplot.
as_ggplot(x)
as_ggplot(x)
x |
an object of class gtable or grob as returned by the functions
|
an object of class ggplot.
# Creat some plots bxp <- ggboxplot(iris, x = "Species", y = "Sepal.Length") vp <- ggviolin(iris, x = "Species", y = "Sepal.Length", add = "mean_sd") # Arrange the plots in one page # Returns a gtable (grob) object library(gridExtra) gt <- arrangeGrob(bxp, vp, ncol = 2) # Transform to a ggplot and print as_ggplot(gt)
# Creat some plots bxp <- ggboxplot(iris, x = "Species", y = "Sepal.Length") vp <- ggviolin(iris, x = "Species", y = "Sepal.Length", add = "mean_sd") # Arrange the plots in one page # Returns a gtable (grob) object library(gridExtra) gt <- arrangeGrob(bxp, vp, ncol = 2) # Transform to a ggplot and print as_ggplot(gt)
Convert character coordinates to npc units and shift postions to avoid overlaps when grouping is active. If numeric validate npc values.
as_npc( value, group = 1L, step = 0.1, margin.npc = 0.05, axis = c("xy", "x", "y") ) as_npcx(value, group = 1L, step = 0.1, margin.npc = 0.05) as_npcy(value, group = 1L, step = 0.1, margin.npc = 0.05)
as_npc( value, group = 1L, step = 0.1, margin.npc = 0.05, axis = c("xy", "x", "y") ) as_npcx(value, group = 1L, step = 0.1, margin.npc = 0.05) as_npcy(value, group = 1L, step = 0.1, margin.npc = 0.05)
value |
numeric (in [0-1]) or character vector of coordinates. If
character, should be one of |
group |
integer ggplot's group id. Used to shift coordinates to avoid overlaps. |
step |
numeric value in [0-1]. The step size for shifting coordinates in npc units. Considered as horizontal step for x-axis and vertical step for y-axis. For y-axis, the step value can be negative to reverse the order of groups. |
margin.npc |
numeric [0-1] The margin added towards the nearest plotting area edge when converting character coordinates into npc. |
axis |
the concerned axis . Should be one of |
the as_npc()
function is an adaptation from
ggpmisc::compute_npc()
.
A numeric vector with values in the range [0-1] representing npc coordinates.
as_npc()
: converts x or y coordinate values into npc. Input values
should be numeric or one of the following values c('right', 'left',
'bottom', 'top', 'center', 'centre', 'middle')
.
as_npcx()
: converts x coordinate values into npc. Input values should
be numeric or one of the following values c('right', 'left',
'center', 'centre', 'middle')
. Wrapper around as_npc(axis = "x")
.
as_npcy()
: converts y coordinate values into npc. Input values should
be numeric or one of the following values c( 'bottom', 'top',
'center', 'centre', 'middle')
. Wrapper around as_npc(axis = "y")
.
as_npc(c("left", "right")) as_npc(c("top", "right"))
as_npc(c("left", "right")) as_npc(c("top", "right"))
Change axis scale.
xscale
: change x axis scale.
yscale
: change y axis scale.
xscale(.scale, .format = FALSE) yscale(.scale, .format = FALSE)
xscale(.scale, .format = FALSE) yscale(.scale, .format = FALSE)
.scale |
axis scale. Allowed values are one of c("none", "log2", "log10", "sqrt", "percent", "dollar", "scientific"); e.g.: .scale="log2". |
.format |
ogical value. If TRUE, axis tick mark labels will be formatted when .scale = "log2" or "log10". |
# Basic scatter plots data(cars) p <- ggscatter(cars, x = "speed", y = "dist") p # Set log scale p + yscale("log2", .format = TRUE)
# Basic scatter plots data(cars) p <- ggscatter(cars, x = "speed", y = "dist") p # Set log scale p + yscale("log2", .format = TRUE)
Add background image to ggplot2.
background_image(raster.img)
background_image(raster.img)
raster.img |
raster object to display, as returned by the function
|
Alboukadel Kassambara <[email protected]>
## Not run: install.packages("png") # Import the image img.file <- system.file(file.path("images", "background-image.png"), package = "ggpubr") img <- png::readPNG(img.file) # Plot with background image ggplot(iris, aes(Species, Sepal.Length))+ background_image(img)+ geom_boxplot(aes(fill = Species), color = "white")+ fill_palette("jco") ## End(Not run)
## Not run: install.packages("png") # Import the image img.file <- system.file(file.path("images", "background-image.png"), package = "ggpubr") img <- png::readPNG(img.file) # Plot with background image ggplot(iris, aes(Species, Sepal.Length))+ background_image(img)+ geom_boxplot(aes(fill = Species), color = "white")+ fill_palette("jco") ## End(Not run)
Change ggplot panel background color.
bgcolor(color)
bgcolor(color)
color |
background color. |
border().
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot p <- ggboxplot(df, x = "dose", y = "len") p # Change panel background color p + bgcolor("#BFD5E3")+ border("#BFD5E3")
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot p <- ggboxplot(df, x = "dose", y = "len") p # Change panel background color p + bgcolor("#BFD5E3")+ border("#BFD5E3")
Change or set ggplot panel border.
border(color = "black", size = 0.8, linetype = NULL)
border(color = "black", size = 0.8, linetype = NULL)
color |
border line color. |
size |
numeric value specifying border line size. |
linetype |
line type. An integer (0:8), a name (blank, solid, dashed,
dotted, dotdash, longdash, twodash). Sess |
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot p <- ggboxplot(df, x = "dose", y = "len") p # Add border p + border()
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot p <- ggboxplot(df, x = "dose", y = "len") p # Add border p + border()
Performs one or multiple mean comparisons.
compare_means( formula, data, method = "wilcox.test", paired = FALSE, group.by = NULL, ref.group = NULL, symnum.args = list(), p.adjust.method = "holm", ... )
compare_means( formula, data, method = "wilcox.test", paired = FALSE, group.by = NULL, ref.group = NULL, symnum.args = list(), p.adjust.method = "holm", ... )
formula |
a formula of the form It's also possible to perform the test for multiple response variables at
the same time. For example, |
data |
a data.frame containing the variables in the formula. |
method |
the type of test. Default is wilcox.test. Allowed values include:
|
paired |
a logical indicating whether you want a paired test. Used only
in |
group.by |
a character vector containing the name of grouping variables. |
ref.group |
a character string specifying the reference group. If specified, for a given grouping variable, each of the group levels will be compared to the reference group (i.e. control group).
|
symnum.args |
a list of arguments to pass to the function
In other words, we use the following convention for symbols indicating statistical significance:
|
p.adjust.method |
method for adjusting p values (see
Note that, when the |
... |
Other arguments to be passed to the test function. |
return a data frame with the following columns:
.y.
: the y variable used in the test.
group1,group2
: the compared groups in the pairwise tests.
Available only when method = "t.test"
or method = "wilcox.test"
.
p
: the p-value.
p.adj
: the adjusted p-value. Default for p.adjust.method = "holm"
.
p.format
: the formatted p-value.
p.signif
: the significance level.
method
: the statistical test used to compare groups.
# Load data #::::::::::::::::::::::::::::::::::::::: data("ToothGrowth") df <- ToothGrowth # One-sample test #::::::::::::::::::::::::::::::::::::::::: compare_means(len ~ 1, df, mu = 0) # Two-samples unpaired test #::::::::::::::::::::::::::::::::::::::::: compare_means(len ~ supp, df) # Two-samples paired test #::::::::::::::::::::::::::::::::::::::::: compare_means(len ~ supp, df, paired = TRUE) # Compare supp levels after grouping the data by "dose" #:::::::::::::::::::::::::::::::::::::::: compare_means(len ~ supp, df, group.by = "dose") # pairwise comparisons #:::::::::::::::::::::::::::::::::::::::: # As dose contains more thant two levels ==> # pairwise test is automatically performed. compare_means(len ~ dose, df) # Comparison against reference group #:::::::::::::::::::::::::::::::::::::::: compare_means(len ~ dose, df, ref.group = "0.5") # Comparison against all #:::::::::::::::::::::::::::::::::::::::: compare_means(len ~ dose, df, ref.group = ".all.") # Anova and kruskal.test #:::::::::::::::::::::::::::::::::::::::: compare_means(len ~ dose, df, method = "anova") compare_means(len ~ dose, df, method = "kruskal.test")
# Load data #::::::::::::::::::::::::::::::::::::::: data("ToothGrowth") df <- ToothGrowth # One-sample test #::::::::::::::::::::::::::::::::::::::::: compare_means(len ~ 1, df, mu = 0) # Two-samples unpaired test #::::::::::::::::::::::::::::::::::::::::: compare_means(len ~ supp, df) # Two-samples paired test #::::::::::::::::::::::::::::::::::::::::: compare_means(len ~ supp, df, paired = TRUE) # Compare supp levels after grouping the data by "dose" #:::::::::::::::::::::::::::::::::::::::: compare_means(len ~ supp, df, group.by = "dose") # pairwise comparisons #:::::::::::::::::::::::::::::::::::::::: # As dose contains more thant two levels ==> # pairwise test is automatically performed. compare_means(len ~ dose, df) # Comparison against reference group #:::::::::::::::::::::::::::::::::::::::: compare_means(len ~ dose, df, ref.group = "0.5") # Comparison against all #:::::::::::::::::::::::::::::::::::::::: compare_means(len ~ dose, df, ref.group = ".all.") # Anova and kruskal.test #:::::::::::::::::::::::::::::::::::::::: compare_means(len ~ dose, df, method = "anova") compare_means(len ~ dose, df, method = "kruskal.test")
Create aes mapping to make programming easy with ggplot2.
create_aes(.list, parse = TRUE)
create_aes(.list, parse = TRUE)
.list |
a list of aesthetic arguments; for example .list = list(x = "dose", y = "len", color = "dose"). |
parse |
logical. If TRUE, parse the input as an expression. |
# Simple aes creation create_aes(list(x = "Sepal.Length", y = "Petal.Length" )) # Parse an expression x <- "log2(Sepal.Length)" y <- "log2(Petal.Length)" create_aes(list(x = x, y = y ), parse = TRUE) # Create a ggplot mapping <- create_aes(list(x = x, y = y ), parse = TRUE) ggplot(iris, mapping) + geom_point()
# Simple aes creation create_aes(list(x = "Sepal.Length", y = "Petal.Length" )) # Parse an expression x <- "log2(Sepal.Length)" y <- "log2(Petal.Length)" create_aes(list(x = x, y = y ), parse = TRUE) # Create a ggplot mapping <- create_aes(list(x = x, y = y ), parse = TRUE) ggplot(iris, mapping) + geom_point()
Computes descriptive statistics by groups for a measure variable.
desc_statby(data, measure.var, grps, ci = 0.95)
desc_statby(data, measure.var, grps, ci = 0.95)
data |
a data frame. |
measure.var |
the name of a column containing the variable to be summarized. |
grps |
a character vector containing grouping variables; e.g.: grps = c("grp1", "grp2") |
ci |
the percent range of the confidence interval (default is 0.95). |
A data frame containing descriptive statistics, such as:
length: the number of elements in each group
min: minimum
max: maximum
median: median
mean: mean
iqr: interquartile range
mad: median absolute deviation (see ?MAD)
sd: standard deviation of the sample
se: standard error of the mean. It's calculated as the sample standard deviation divided by the root of the sample size.
ci: confidence interval of the mean
range: the range = max - min
cv: coefficient of variation, sd/mean
var: variance, sd^2
# Load data data("ToothGrowth") # Descriptive statistics res <- desc_statby(ToothGrowth, measure.var = "len", grps = c("dose", "supp")) head(res[, 1:10])
# Load data data("ToothGrowth") # Descriptive statistics res <- desc_statby(ToothGrowth, measure.var = "len", grps = c("dose", "supp")) head(res[, 1:10])
Differential gene expression analysis results obtained from comparing the RNAseq data of two different cell populations using DESeq2
data("diff_express")
data("diff_express")
A data frame with 36028 rows and 5 columns.
name
gene names
baseMean
mean expression signal across all samples
log2FoldChange
log2 fold change
padj
Adjusted p-value
detection_call
a numeric vector specifying whether the genes is expressed (value = 1) or not (value = 0).
data(diff_express) # Default plot ggmaplot(diff_express, main = expression("Group 1" %->% "Group 2"), fdr = 0.05, fc = 2, size = 0.4, palette = c("#B31B21", "#1465AC", "darkgray"), genenames = as.vector(diff_express$name), legend = "top", top = 20, font.label = c("bold", 11), font.legend = "bold", font.main = "bold", ggtheme = ggplot2::theme_minimal()) # Add rectangle around labesl ggmaplot(diff_express, main = expression("Group 1" %->% "Group 2"), fdr = 0.05, fc = 2, size = 0.4, palette = c("#B31B21", "#1465AC", "darkgray"), genenames = as.vector(diff_express$name), legend = "top", top = 20, font.label = c("bold", 11), label.rectangle = TRUE, font.legend = "bold", font.main = "bold", ggtheme = ggplot2::theme_minimal())
data(diff_express) # Default plot ggmaplot(diff_express, main = expression("Group 1" %->% "Group 2"), fdr = 0.05, fc = 2, size = 0.4, palette = c("#B31B21", "#1465AC", "darkgray"), genenames = as.vector(diff_express$name), legend = "top", top = 20, font.label = c("bold", 11), font.legend = "bold", font.main = "bold", ggtheme = ggplot2::theme_minimal()) # Add rectangle around labesl ggmaplot(diff_express, main = expression("Group 1" %->% "Group 2"), fdr = 0.05, fc = 2, size = 0.4, palette = c("#B31B21", "#1465AC", "darkgray"), genenames = as.vector(diff_express$name), legend = "top", top = 20, font.label = c("bold", 11), label.rectangle = TRUE, font.legend = "bold", font.main = "bold", ggtheme = ggplot2::theme_minimal())
Create multi-panel plots of a data set grouped by one or two
grouping variables. Wrapper around facet_wrap
facet( p, facet.by, nrow = NULL, ncol = NULL, scales = "fixed", short.panel.labs = TRUE, labeller = "label_value", panel.labs = NULL, panel.labs.background = list(color = NULL, fill = NULL), panel.labs.font = list(face = NULL, color = NULL, size = NULL, angle = NULL), panel.labs.font.x = panel.labs.font, panel.labs.font.y = panel.labs.font, strip.position = "top", ... )
facet( p, facet.by, nrow = NULL, ncol = NULL, scales = "fixed", short.panel.labs = TRUE, labeller = "label_value", panel.labs = NULL, panel.labs.background = list(color = NULL, fill = NULL), panel.labs.font = list(face = NULL, color = NULL, size = NULL, angle = NULL), panel.labs.font.x = panel.labs.font, panel.labs.font.y = panel.labs.font, strip.position = "top", ... )
p |
a ggplot |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
nrow , ncol
|
Number of rows and columns in the panel. Used only when the data is faceted by one grouping variable. |
scales |
should axis scales of panels be fixed ("fixed", the default), free ("free"), or free in one dimension ("free_x", "free_y"). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
labeller |
Character vector. An alternative to the argument
|
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
panel.labs.background |
a list to customize the background of panel labels. Should contain the combination of the following elements:
For example, panel.labs.background = list(color = "blue", fill = "pink", linetype = "dashed", size = 0.5). |
panel.labs.font |
a list of aestheics indicating the size (e.g.: 14), the face/style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") and the orientation angle (e.g.: 45) of panel labels. |
panel.labs.font.x , panel.labs.font.y
|
same as panel.labs.font but for only x and y direction, respectively. |
strip.position |
(used only in |
... |
not used |
p <- ggboxplot(ToothGrowth, x = "dose", y = "len", color = "supp") print(p) facet(p, facet.by = "supp") # Customize facet(p + theme_bw(), facet.by = "supp", short.panel.labs = FALSE, # Allow long labels in panels panel.labs.background = list(fill = "steelblue", color = "steelblue") )
p <- ggboxplot(ToothGrowth, x = "dose", y = "len", color = "supp") print(p) facet(p, facet.by = "supp") # Customize facet(p + theme_bw(), facet.by = "supp", short.panel.labs = FALSE, # Allow long labels in panels panel.labs.background = list(fill = "steelblue", color = "steelblue") )
Change the appearance of the main title, subtitle, caption, axis
labels and text, as well as the legend title and texts. Wrapper around
element_text()
.
font(object, size = NULL, color = NULL, face = NULL, family = NULL, ...)
font(object, size = NULL, color = NULL, face = NULL, family = NULL, ...)
object |
character string specifying the plot components. Allowed values include:
|
size |
numeric value specifying the font size, (e.g.: |
color |
character string specifying the font color, (e.g.: |
face |
the font face or style. Allowed values include one of
|
family |
the font family. |
... |
other arguments to pass to the function
|
# Load data data("ToothGrowth") # Basic plot p <- ggboxplot(ToothGrowth, x = "dose", y = "len", color = "dose", title = "Box Plot created with ggpubr", subtitle = "Length by dose", caption = "Source: ggpubr", xlab ="Dose (mg)", ylab = "Teeth length") p # Change the appearance of titles and labels p + font("title", size = 14, color = "red", face = "bold.italic")+ font("subtitle", size = 10, color = "orange")+ font("caption", size = 10, color = "orange")+ font("xlab", size = 12, color = "blue")+ font("ylab", size = 12, color = "#993333")+ font("xy.text", size = 12, color = "gray", face = "bold") # Change the appearance of legend title and texts p + font("legend.title", color = "blue", face = "bold")+ font("legend.text", color = "red")
# Load data data("ToothGrowth") # Basic plot p <- ggboxplot(ToothGrowth, x = "dose", y = "len", color = "dose", title = "Box Plot created with ggpubr", subtitle = "Length by dose", caption = "Source: ggpubr", xlab ="Dose (mg)", ylab = "Teeth length") p # Change the appearance of titles and labels p + font("title", size = 14, color = "red", face = "bold.italic")+ font("subtitle", size = 10, color = "orange")+ font("caption", size = 10, color = "orange")+ font("xlab", size = 12, color = "blue")+ font("ylab", size = 12, color = "#993333")+ font("xy.text", size = 12, color = "gray", face = "bold") # Change the appearance of legend title and texts p + font("legend.title", color = "blue", face = "bold")+ font("legend.text", color = "red")
Contains the mean citation index of 66 genes obtained by assessing PubMed abstracts and annotations using two key words i) Gene name + b cell differentiation and ii) Gene name + plasma cell differentiation.
data("gene_citation")
data("gene_citation")
A data frame with 66 rows and 2 columns.
gene
gene names
citation_index
mean citation index
data(gene_citation) # Some key genes of interest to be highlighted key.gns <- c("MYC", "PRDM1", "CD69", "IRF4", "CASP3", "BCL2L1", "MYB", "BACH2", "BIM1", "PTEN", "KRAS", "FOXP1", "IGF1R", "KLF4", "CDK6", "CCND2", "IGF1", "TNFAIP3", "SMAD3", "SMAD7", "BMPR2", "RB1", "IGF2R", "ARNT") # Density distribution ggdensity(gene_citation, x = "citation_index", y = "..count..", xlab = "Number of citation", ylab = "Number of genes", fill = "lightgray", color = "black", label = "gene", label.select = key.gns, repel = TRUE, font.label = list(color= "citation_index"), xticks.by = 20, # Break x ticks by 20 gradient.cols = c("blue", "red"), legend = "bottom", legend.title = "" # Hide legend title )
data(gene_citation) # Some key genes of interest to be highlighted key.gns <- c("MYC", "PRDM1", "CD69", "IRF4", "CASP3", "BCL2L1", "MYB", "BACH2", "BIM1", "PTEN", "KRAS", "FOXP1", "IGF1R", "KLF4", "CDK6", "CCND2", "IGF1", "TNFAIP3", "SMAD3", "SMAD7", "BMPR2", "RB1", "IGF2R", "ARNT") # Density distribution ggdensity(gene_citation, x = "citation_index", y = "..count..", xlab = "Number of citation", ylab = "Number of genes", fill = "lightgray", color = "black", label = "gene", label.select = key.gns, repel = TRUE, font.label = list(color= "citation_index"), xticks.by = 20, # Break x ticks by 20 gradient.cols = c("blue", "red"), legend = "bottom", legend.title = "" # Hide legend title )
Gene expression data extracted from TCGA using the 'RTCGA' and 'RTCGA.mRNA' R packages. It contains the mRNA expression for 3 genes - GATA3, PTEN and XBP1- from 3 different datasets: Breast invasive carcinoma (BRCA), Ovarian serous cystadenocarcinoma (OV) and Lung squamous cell carcinoma (LUSC)
data("gene_expression")
data("gene_expression")
A data frame with 1305 rows and 5 columns.
bcr_patient_barcode
sample ID
dataset
cance type
GATA3
GATA3 gene expression
PTEN
PTEN gene expression
XBP1
XBP1 gene expression.
data(gene_expression) ggboxplot(gene_expression, x = "dataset", y = c("GATA3", "PTEN", "XBP1"), combine = TRUE, ylab = "Expression", color = "dataset", palette = "jco")
data(gene_expression) ggboxplot(gene_expression, x = "dataset", y = c("GATA3", "PTEN", "XBP1"), combine = TRUE, ylab = "Expression", color = "dataset", palette = "jco")
A helper function used by ggpubr functions to execute any geom_* functions in ggplot2. Useful only when you want to call a geom_* function without carrying about the arguments to put in aes(). Basic users of ggpubr don't need this function.
geom_exec(geomfunc = NULL, data = NULL, position = NULL, ...)
geom_exec(geomfunc = NULL, data = NULL, position = NULL, ...)
geomfunc |
a ggplot2 function (e.g.: geom_point) |
data |
a data frame to be used for mapping |
position |
Position adjustment, either as a string, or the result of a call to a position adjustment function. |
... |
arguments accepted by the function |
return a plot if geomfunc!=Null or a list(option, mapping) if geomfunc = NULL.
## Not run: ggplot() + geom_exec(geom_point, data = mtcars, x = "mpg", y = "wt", size = "cyl", color = "cyl") ## End(Not run)
## Not run: ggplot() + geom_exec(geom_point, data = mtcars, x = "mpg", y = "wt", size = "cyl", color = "cyl") ## End(Not run)
Creates breaks for numeric axes to be used in the functions
scale_x_continuous()
and
scale_y_continuous()
. Can be used to increase the
number of x and y ticks by specifying the option n
. It's also
possible to control axis breaks by specifying a step between ticks. For
example, if by = 5
, a tick mark is shown on every 5.
get_breaks(n = NULL, by = NULL, from = NULL, to = NULL)
get_breaks(n = NULL, by = NULL, from = NULL, to = NULL)
n |
number of breaks. |
by |
number: the step between breaks. |
from |
the starting value of breaks. By default, 0 is used for positive variables |
to |
the end values of breaks. This corresponds generally to the maximum limit of the axis. |
a break function
# Generate 5 breaks for a variable x get_breaks(n = 5)(x = 1:100) # Generate breaks using an increasing step get_breaks(by = 10)(x = 1:100) # Combine with ggplot scale_xx functions library(ggplot2) # Create a basic plot p <- ggscatter(mtcars, x = "wt", y = "mpg") p # Increase the number of ticks p + scale_x_continuous(breaks = get_breaks(n = 10)) + scale_y_continuous(breaks = get_breaks(n = 10)) # Set ticks according to a specific step, starting from 0 p + scale_x_continuous( breaks = get_breaks(by = 1.5, from = 0), limits = c(0, 6) ) + scale_y_continuous( breaks = get_breaks(by = 10, from = 0), limits = c(0, 40) )
# Generate 5 breaks for a variable x get_breaks(n = 5)(x = 1:100) # Generate breaks using an increasing step get_breaks(by = 10)(x = 1:100) # Combine with ggplot scale_xx functions library(ggplot2) # Create a basic plot p <- ggscatter(mtcars, x = "wt", y = "mpg") p # Increase the number of ticks p + scale_x_continuous(breaks = get_breaks(n = 10)) + scale_y_continuous(breaks = get_breaks(n = 10)) # Set ticks according to a specific step, starting from 0 p + scale_x_continuous( breaks = get_breaks(by = 1.5, from = 0), limits = c(0, 6) ) + scale_y_continuous( breaks = get_breaks(by = 10, from = 0), limits = c(0, 40) )
Checks and returns selected coordinates from multiple input options, which can be either data (x-y) coordinates or npc (normalized parent coordinates).
Helper function internally used in ggpubr
function to guess the type
of coordinates specified by the user. For example, in the function
stat_cor()
, users can specify either the option label.x
(data
coordinates) or label.x.npc
(npc coordinates); those coordinates are
passed to get_coord()
, which will make some checking and then return
a unique coordinates for the label position.
get_coord( group = 1L, data.ranges = NULL, coord = NULL, npc = "left", step = 0.1, margin.npc = 0.05 )
get_coord( group = 1L, data.ranges = NULL, coord = NULL, npc = "left", step = 0.1, margin.npc = 0.05 )
group |
integer ggplot's group id. Used to shift coordinates to avoid overlaps. |
data.ranges |
a numeric vector of length 2 containing the data ranges
(minimum and the maximum). Should be specified only when |
coord |
data coordinates (i.e., either x or y coordinates). |
npc |
numeric (in [0-1]) or character vector of coordinates. If
character, should be one of c('right', 'left', 'bottom', 'top', 'center',
'centre', 'middle'). Note that, the |
step |
numeric value in [0-1]. The step size for shifting coordinates in npc units. Considered as horizontal step for x-axis and vertical step for y-axis. For y-axis, the step value can be negative to reverse the order of groups. |
margin.npc |
numeric [0-1] The margin added towards the nearest plotting area edge when converting character coordinates into npc. |
a numeric vector representing data coordinates.
# If npc is specified, it is converted into data coordinates get_coord(data.ranges = c(2, 20), npc = "left") get_coord(data.ranges = c(2, 20), npc = 0.1) # When coord is specified, no transformation is performed # because this is assumed to be a data coordinate get_coord(coord = 5) # For grouped plots res_top <- get_coord( data.ranges = c(4.2, 36.4), group = c(1, 2, 3), npc = "top", step = -0.1, margin.npc = 0 ) res_top
# If npc is specified, it is converted into data coordinates get_coord(data.ranges = c(2, 20), npc = "left") get_coord(data.ranges = c(2, 20), npc = 0.1) # When coord is specified, no transformation is performed # because this is assumed to be a data coordinate get_coord(coord = 5) # For grouped plots res_top <- get_coord( data.ranges = c(4.2, 36.4), group = c(1, 2, 3), npc = "top", step = -0.1, margin.npc = 0 ) res_top
Extract the legend labels from a ggplot object.
get_legend(p, position = NULL)
get_legend(p, position = NULL)
p |
an object of class ggplot or a list of ggplots. If p is a list, only the first legend is returned. |
position |
character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). To remove the legend use legend = "none". |
an object of class gtable.
# Create a scatter plot p <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", palette = "jco", ggtheme = theme_minimal()) p # Extract the legend. Returns a gtable leg <- get_legend(p) # Convert to a ggplot and print as_ggplot(leg)
# Create a scatter plot p <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", palette = "jco", ggtheme = theme_minimal()) p # Extract the legend. Returns a gtable leg <- get_legend(p) # Convert to a ggplot and print as_ggplot(leg)
Generate a palette of k colors from ggsci palettes, RColorbrewer palettes and custom color palettes. Useful to extend RColorBrewer and ggsci to support more colors.
get_palette(palette = "default", k)
get_palette(palette = "default", k)
palette |
Color palette. Allowed values include:
|
k |
the number of colors to generate. |
RColorBrewer palettes: To display all available color palettes, type this in R:RColorBrewer::display.brewer.all(). Color palette names include:
Sequential palettes, suited to ordered data that progress from low to high. Palette names include: Blues BuGn BuPu GnBu Greens Greys Oranges OrRd PuBu PuBuGn PuRd Purples RdPu Reds YlGn YlGnBu YlOrBr YlOrRd.
Diverging palettes:Gradient colors. Names include: BrBG PiYG PRGn PuOr RdBu RdGy RdYlBu RdYlGn Spectral.
Qualitative palettes: Best suited to representing nominal or categorical data. Names include: Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3.
Returns a vector of color palettes.
data("iris") iris$Species2 <- factor(rep(c(1:10), each = 15)) # Generate a gradient of 10 colors ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species2", palette = get_palette(c("#00AFBB", "#E7B800", "#FC4E07"), 10)) # Scatter plot with default color palette ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species") # RColorBrewer color palettes ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species", palette = get_palette("Dark2", 3)) # ggsci color palettes ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species", palette = get_palette("npg", 3)) # Custom color palette ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Or use this ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species", palette = get_palette(c("#00AFBB", "#FC4E07"), 3))
data("iris") iris$Species2 <- factor(rep(c(1:10), each = 15)) # Generate a gradient of 10 colors ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species2", palette = get_palette(c("#00AFBB", "#E7B800", "#FC4E07"), 10)) # Scatter plot with default color palette ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species") # RColorBrewer color palettes ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species", palette = get_palette("Dark2", 3)) # ggsci color palettes ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species", palette = get_palette("npg", 3)) # Custom color palette ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Or use this ggscatter(iris, x = "Sepal.Length", y = "Petal.Length", color = "Species", palette = get_palette(c("#00AFBB", "#FC4E07"), 3))
Add summary statistics or a geometry onto a ggplot.
ggadd( p, add = NULL, color = "black", fill = "white", group = 1, width = 1, shape = 19, size = NULL, alpha = 1, jitter = 0.2, seed = 123, binwidth = NULL, dotsize = size, linetype = 1, show.legend = NA, error.plot = "pointrange", ci = 0.95, data = NULL, position = position_dodge(0.8), p_geom = "" )
ggadd( p, add = NULL, color = "black", fill = "white", group = 1, width = 1, shape = 19, size = NULL, alpha = 1, jitter = 0.2, seed = 123, binwidth = NULL, dotsize = size, linetype = 1, show.legend = NA, error.plot = "pointrange", ci = 0.95, data = NULL, position = position_dodge(0.8), p_geom = "" )
p |
a ggplot |
add |
character vector specifying other plot elements to be added. Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range". |
color |
point or outline color. |
fill |
fill color. Used only when |
group |
grouping variable. Allowed values are 1 (for one group) or a character vector specifying the name of the grouping variable. Used only for adding statistical summary per group. |
width |
numeric value between 0 and 1 specifying bar or box width.
Example width = 0.8. Used only when |
shape |
point shape. Allowed values can be displayed using the function
|
size |
numeric value in [0-1] specifying point and line size. |
alpha |
numeric value specifying fill color transparency. Value should be in [0, 1], where 0 is full transparency and 1 is no transparency. |
jitter |
a numeric value specifying the amount of jittering. Used only
when |
seed |
A random seed to make the jitter reproducible. Default is '123'. Useful if you need to apply the same jitter twice, e.g., for a point and a corresponding label. The random seed is reset after jittering. If 'NA', the seed is initialized with a random value; this makes sure that two subsequent calls start with a different seed. Use NULL to use the current random seed and also avoid resetting (the behaviour of ggplot 2.2.1 and earlier). |
binwidth |
numeric value specifying bin width. use value between 0 and 1
when you have a strong dense dotplot. For example binwidth = 0.2. Used only
when |
dotsize |
as |
linetype |
line type. |
show.legend |
logical. Should this layer be included in the legends? NA,
the default, includes if any aesthetics are mapped. |
error.plot |
plot type used to visualize error. Allowed values are one of
|
ci |
the percent range of the confidence interval (default is 0.95). |
data |
a |
position |
position adjustment, either as a string, or the result of a call to a position adjustment function. Used to adjust position for multiple groups. |
p_geom |
the geometry of the main plot. Ex: p_geom = "geom_line". If NULL, the geometry is extracted from p. Used only by ggline(). |
# Basic violin plot data("ToothGrowth") p <- ggviolin(ToothGrowth, x = "dose", y = "len", add = "none") # Add mean +/- SD and jitter points p %>% ggadd(c("mean_sd", "jitter"), color = "dose") # Add box plot p %>% ggadd(c("boxplot", "jitter"), color = "dose")
# Basic violin plot data("ToothGrowth") p <- ggviolin(ToothGrowth, x = "dose", y = "len", add = "none") # Add mean +/- SD and jitter points p %>% ggadd(c("mean_sd", "jitter"), color = "dose") # Add box plot p %>% ggadd(c("boxplot", "jitter"), color = "dose")
Adjust p-values produced by geom_pwc()
on a ggplot.
This is mainly useful when using facet, where p-values are generally
computed and adjusted by panel without taking into account the other panels.
In this case, one might want to adjust after the p-values of all panels together.
ggadjust_pvalue( p, layer = NULL, p.adjust.method = "holm", label = "p.adj", hide.ns = NULL, symnum.args = list(), output = c("plot", "stat_test") )
ggadjust_pvalue( p, layer = NULL, p.adjust.method = "holm", label = "p.adj", hide.ns = NULL, symnum.args = list(), output = c("plot", "stat_test") )
p |
a ggplot |
layer |
An integer indicating the statistical layer rank in the ggplot (in the order added to the plot). |
p.adjust.method |
method for adjusting p values (see
|
label |
character string specifying label. Can be:
. |
hide.ns |
can be logical value ( |
symnum.args |
a list of arguments to pass to the function
In other words, we use the following convention for symbols indicating statistical significance:
|
output |
character. Possible values are one of |
# Data preparation #::::::::::::::::::::::::::::::::::::::: df <- ToothGrowth df$dose <- as.factor(df$dose) # Add a random grouping variable df$group <- factor(rep(c("grp1", "grp2"), 30)) head(df, 3) # Boxplot: Two groups by panel #::::::::::::::::::::::::::::::::::::::: # Create a box plot bxp <- ggboxplot( df, x = "supp", y = "len", fill = "#00AFBB", facet.by = "dose" ) # Make facet and add p-values bxp <- bxp + geom_pwc(method = "t_test") bxp # Adjust all p-values together after ggadjust_pvalue( bxp, p.adjust.method = "bonferroni", label = "{p.adj.format}{p.adj.signif}", hide.ns = TRUE ) # Boxplot: Three groups by panel #::::::::::::::::::::::::::::::::::::::: # Create a box plot bxp <- ggboxplot( df, x = "dose", y = "len", fill = "#00AFBB", facet.by = "supp" ) # Make facet and add p-values bxp <- bxp + geom_pwc(method = "t_test") bxp # Adjust all p-values together after ggadjust_pvalue( bxp, p.adjust.method = "bonferroni", label = "{p.adj.format}{p.adj.signif}" )
# Data preparation #::::::::::::::::::::::::::::::::::::::: df <- ToothGrowth df$dose <- as.factor(df$dose) # Add a random grouping variable df$group <- factor(rep(c("grp1", "grp2"), 30)) head(df, 3) # Boxplot: Two groups by panel #::::::::::::::::::::::::::::::::::::::: # Create a box plot bxp <- ggboxplot( df, x = "supp", y = "len", fill = "#00AFBB", facet.by = "dose" ) # Make facet and add p-values bxp <- bxp + geom_pwc(method = "t_test") bxp # Adjust all p-values together after ggadjust_pvalue( bxp, p.adjust.method = "bonferroni", label = "{p.adj.format}{p.adj.signif}", hide.ns = TRUE ) # Boxplot: Three groups by panel #::::::::::::::::::::::::::::::::::::::: # Create a box plot bxp <- ggboxplot( df, x = "dose", y = "len", fill = "#00AFBB", facet.by = "supp" ) # Make facet and add p-values bxp <- bxp + geom_pwc(method = "t_test") bxp # Adjust all p-values together after ggadjust_pvalue( bxp, p.adjust.method = "bonferroni", label = "{p.adj.format}{p.adj.signif}" )
Arrange multiple ggplots on the same page. Wrapper around
plot_grid()
. Can arrange multiple ggplots over
multiple pages, compared to the standard
plot_grid()
. Can also create a common unique legend
for multiple plots.
ggarrange( ..., plotlist = NULL, ncol = NULL, nrow = NULL, labels = NULL, label.x = 0, label.y = 1, hjust = -0.5, vjust = 1.5, font.label = list(size = 14, color = "black", face = "bold", family = NULL), align = c("none", "h", "v", "hv"), widths = 1, heights = 1, legend = NULL, common.legend = FALSE, legend.grob = NULL )
ggarrange( ..., plotlist = NULL, ncol = NULL, nrow = NULL, labels = NULL, label.x = 0, label.y = 1, hjust = -0.5, vjust = 1.5, font.label = list(size = 14, color = "black", face = "bold", family = NULL), align = c("none", "h", "v", "hv"), widths = 1, heights = 1, legend = NULL, common.legend = FALSE, legend.grob = NULL )
... |
list of plots to be arranged into the grid. The plots can be either ggplot2 plot objects or arbitrary gtables. |
plotlist |
(optional) list of plots to display. |
ncol |
(optional) number of columns in the plot grid. |
nrow |
(optional) number of rows in the plot grid. |
labels |
(optional) list of labels to be added to the plots. You can also set labels="AUTO" to auto-generate upper-case labels or labels="auto" to auto-generate lower-case labels. |
label.x |
(optional) Single value or vector of x positions for plot labels, relative to each subplot. Defaults to 0 for all labels. (Each label is placed all the way to the left of each plot.) |
label.y |
(optional) Single value or vector of y positions for plot labels, relative to each subplot. Defaults to 1 for all labels. (Each label is placed all the way to the top of each plot.) |
hjust |
Adjusts the horizontal position of each label. More negative values move the label further to the right on the plot canvas. Can be a single value (applied to all labels) or a vector of values (one for each label). Default is -0.5. |
vjust |
Adjusts the vertical position of each label. More positive values move the label further down on the plot canvas. Can be a single value (applied to all labels) or a vector of values (one for each label). Default is 1.5. |
font.label |
a list of arguments for customizing labels. Allowed values are the combination of the following elements: size (e.g.: 14), face (e.g.: "plain", "bold", "italic", "bold.italic"), color (e.g.: "red") and family. For example font.label = list(size = 14, face = "bold", color ="red"). |
align |
(optional) Specifies whether graphs in the grid should be horizontally ("h") or vertically ("v") aligned. Options are "none" (default), "hv" (align in both directions), "h", and "v". |
widths |
(optional) numerical vector of relative columns widths. For example, in a two-column grid, widths = c(2, 1) would make the first column twice as wide as the second column. |
heights |
same as |
legend |
character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). To remove the legend use legend = "none". |
common.legend |
logical value. Default is FALSE. If TRUE, a common unique legend will be created for arranged plots. |
legend.grob |
a legend grob as returned by the function
|
return an object of class ggarrange
, which is a ggplot or a
list of ggplot.
Alboukadel Kassambara [email protected]
data("ToothGrowth") df <- ToothGrowth df$dose <- as.factor(df$dose) # Create some plots # :::::::::::::::::::::::::::::::::::::::::::::::::: # Box plot bxp <- ggboxplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Dot plot dp <- ggdotplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Density plot dens <- ggdensity(df, x = "len", fill = "dose", palette = "jco") # Arrange # :::::::::::::::::::::::::::::::::::::::::::::::::: ggarrange(bxp, dp, dens, ncol = 2, nrow = 2) # Use a common legend for multiple plots ggarrange(bxp, dp, common.legend = TRUE)
data("ToothGrowth") df <- ToothGrowth df$dose <- as.factor(df$dose) # Create some plots # :::::::::::::::::::::::::::::::::::::::::::::::::: # Box plot bxp <- ggboxplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Dot plot dp <- ggdotplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Density plot dens <- ggdensity(df, x = "len", fill = "dose", palette = "jco") # Arrange # :::::::::::::::::::::::::::::::::::::::::::::::::: ggarrange(bxp, dp, dens, ncol = 2, nrow = 2) # Use a common legend for multiple plots ggarrange(bxp, dp, common.legend = TRUE)
Plot a graphical matrix where each cell contains a dot whose size reflects the relative magnitude of the corresponding component. Useful to visualize contingency table formed by two categorical variables.
ggballoonplot( data, x = NULL, y = NULL, size = "value", facet.by = NULL, size.range = c(1, 10), shape = 21, color = "black", fill = "gray", show.label = FALSE, font.label = list(size = 12, color = "black"), rotate.x.text = TRUE, ggtheme = theme_minimal(), ... )
ggballoonplot( data, x = NULL, y = NULL, size = "value", facet.by = NULL, size.range = c(1, 10), shape = 21, color = "black", fill = "gray", show.label = FALSE, font.label = list(size = 12, color = "black"), rotate.x.text = TRUE, ggtheme = theme_minimal(), ... )
data |
a data frame. Can be:
. |
x , y
|
the column names specifying, respectively, the first and the second variable forming the contingency table. Required only when the data is a stretched contingency table. |
size |
point size. By default, the points size reflects the relative
magnitude of the value of the corresponding cell ( |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
size.range |
a numeric vector of length 2 that specifies the minimum and
maximum size of the plotting symbol. Default values are |
shape |
points shape. The default value is 21. Alternaive values include 22, 23, 24, 25. |
color |
point border line color. |
fill |
point fill color. Default is "lightgray". Considered only for points 21 to 25. |
show.label |
logical. If TRUE, show the data cell values as point labels. |
font.label |
a vector of length 3 indicating respectively the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of point labels. For example font.label = c(14, "bold", "red"). To specify only the size and the style, use font.label = c(14, "plain"). |
rotate.x.text |
logica. If TRUE (default), rotate the x axis text. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments passed to the function |
# Define color palette my_cols <- c("#0D0887FF", "#6A00A8FF", "#B12A90FF", "#E16462FF", "#FCA636FF", "#F0F921FF") # Standard contingency table #::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # Read a contingency table: housetasks # Repartition of 13 housetasks in the couple data <- read.delim( system.file("demo-data/housetasks.txt", package = "ggpubr"), row.names = 1 ) data # Basic ballon plot ggballoonplot(data) # Change color and fill ggballoonplot(data, color = "#0073C2FF", fill = "#0073C2FF") # Change color according to the value of table cells ggballoonplot(data, fill = "value")+ scale_fill_gradientn(colors = my_cols) # Change the plotting symbol shape ggballoonplot(data, fill = "value", shape = 23)+ gradient_fill(c("blue", "white", "red")) # Set points size to 8, but change fill color by values # Sow labels ggballoonplot(data, fill = "value", color = "lightgray", size = 10, show.label = TRUE)+ gradient_fill(c("blue", "white", "red")) # Streched contingency table #::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # Create an Example Data Frame Containing Car x Color data carnames <- c("bmw","renault","mercedes","seat") carcolors <- c("red","white","silver","green") datavals <- round(rnorm(16, mean=100, sd=60),1) car_data <- data.frame(Car = rep(carnames,4), Color = rep(carcolors, c(4,4,4,4) ), Value=datavals ) car_data ggballoonplot(car_data, x = "Car", y = "Color", size = "Value", fill = "Value") + scale_fill_gradientn(colors = my_cols) + guides(size = FALSE) # Grouped frequency table #::::::::::::::::::::::::::::::::::::::::::::::::::::::::: data("Titanic") dframe <- as.data.frame(Titanic) head(dframe) ggballoonplot( dframe, x = "Class", y = "Sex", size = "Freq", fill = "Freq", facet.by = c("Survived", "Age"), ggtheme = theme_bw() )+ scale_fill_gradientn(colors = my_cols) # Hair and Eye Color of Statistics Students data(HairEyeColor) ggballoonplot( as.data.frame(HairEyeColor), x = "Hair", y = "Eye", size = "Freq", ggtheme = theme_gray()) %>% facet("Sex")
# Define color palette my_cols <- c("#0D0887FF", "#6A00A8FF", "#B12A90FF", "#E16462FF", "#FCA636FF", "#F0F921FF") # Standard contingency table #::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # Read a contingency table: housetasks # Repartition of 13 housetasks in the couple data <- read.delim( system.file("demo-data/housetasks.txt", package = "ggpubr"), row.names = 1 ) data # Basic ballon plot ggballoonplot(data) # Change color and fill ggballoonplot(data, color = "#0073C2FF", fill = "#0073C2FF") # Change color according to the value of table cells ggballoonplot(data, fill = "value")+ scale_fill_gradientn(colors = my_cols) # Change the plotting symbol shape ggballoonplot(data, fill = "value", shape = 23)+ gradient_fill(c("blue", "white", "red")) # Set points size to 8, but change fill color by values # Sow labels ggballoonplot(data, fill = "value", color = "lightgray", size = 10, show.label = TRUE)+ gradient_fill(c("blue", "white", "red")) # Streched contingency table #::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # Create an Example Data Frame Containing Car x Color data carnames <- c("bmw","renault","mercedes","seat") carcolors <- c("red","white","silver","green") datavals <- round(rnorm(16, mean=100, sd=60),1) car_data <- data.frame(Car = rep(carnames,4), Color = rep(carcolors, c(4,4,4,4) ), Value=datavals ) car_data ggballoonplot(car_data, x = "Car", y = "Color", size = "Value", fill = "Value") + scale_fill_gradientn(colors = my_cols) + guides(size = FALSE) # Grouped frequency table #::::::::::::::::::::::::::::::::::::::::::::::::::::::::: data("Titanic") dframe <- as.data.frame(Titanic) head(dframe) ggballoonplot( dframe, x = "Class", y = "Sex", size = "Freq", fill = "Freq", facet.by = c("Survived", "Age"), ggtheme = theme_bw() )+ scale_fill_gradientn(colors = my_cols) # Hair and Eye Color of Statistics Students data(HairEyeColor) ggballoonplot( as.data.frame(HairEyeColor), x = "Hair", y = "Eye", size = "Freq", ggtheme = theme_gray()) %>% facet("Sex")
Create a bar plot.
ggbarplot( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "white", palette = NULL, size = NULL, width = NULL, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, select = NULL, remove = NULL, order = NULL, add = "none", add.params = list(), error.plot = "errorbar", label = FALSE, lab.col = "black", lab.size = 4, lab.pos = c("out", "in"), lab.vjust = NULL, lab.hjust = NULL, lab.nb.digits = NULL, sort.val = c("none", "desc", "asc"), sort.by.groups = TRUE, top = Inf, position = position_stack(), ggtheme = theme_pubr(), ... )
ggbarplot( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "white", palette = NULL, size = NULL, width = NULL, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, select = NULL, remove = NULL, order = NULL, add = "none", add.params = list(), error.plot = "errorbar", label = FALSE, lab.col = "black", lab.size = 4, lab.pos = c("out", "in"), lab.vjust = NULL, lab.hjust = NULL, lab.nb.digits = NULL, sort.val = c("none", "desc", "asc"), sort.by.groups = TRUE, top = Inf, position = position_stack(), ggtheme = theme_pubr(), ... )
data |
a data frame |
x , y
|
x and y variables for drawing. |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color , fill
|
outline and fill colors. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
width |
numeric value between 0 and 1 specifying box width. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
select |
character vector specifying which items to display. |
remove |
character vector specifying which items to remove from the plot. |
order |
character vector specifying the order of items. |
add |
character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see ?desc_statby for more details. |
add.params |
parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
error.plot |
plot type used to visualize error. Allowed values are one of c("pointrange", "linerange", "crossbar", "errorbar", "upper_errorbar", "lower_errorbar", "upper_pointrange", "lower_pointrange", "upper_linerange", "lower_linerange"). Default value is "pointrange" or "errorbar". Used only when add != "none" and add contains one "mean_*" or "med_*" where "*" = sd, se, .... |
label |
specify whether to add labels on the bar plot. Allowed values are:
|
lab.col , lab.size
|
text color and size for labels. |
lab.pos |
character specifying the position for labels. Allowed values are "out" (for outside) or "in" (for inside). Ignored when lab.vjust != NULL. |
lab.vjust |
numeric, vertical justification of labels. Provide negative value (e.g.: -0.4) to put labels outside the bars or positive value to put labels inside (e.g.: 2). |
lab.hjust |
numeric, horizontal justification of labels. |
lab.nb.digits |
integer indicating the number of decimal places (round) to be used. |
sort.val |
a string specifying whether the value should be sorted. Allowed values are "none" (no sorting), "asc" (for ascending) or "desc" (for descending). |
sort.by.groups |
logical value. If TRUE the data are sorted by groups. Used only when sort.val != "none". |
top |
a numeric value specifying the number of top elements to be shown. |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to be passed to ggpar(). |
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Data df <- data.frame(dose=c("D0.5", "D1", "D2"), len=c(4.2, 10, 29.5)) print(df) # Basic plot with label outsite # +++++++++++++++++++++++++++ ggbarplot(df, x = "dose", y = "len", label = TRUE, label.pos = "out") # Change width ggbarplot(df, x = "dose", y = "len", width = 0.5) # Change the plot orientation: horizontal ggbarplot(df, "dose", "len", orientation = "horiz") # Change the default order of items ggbarplot(df, "dose", "len", order = c("D2", "D1", "D0.5")) # Change colors # +++++++++++++++++++++++++++ # Change fill and outline color # add labels inside bars ggbarplot(df, "dose", "len", fill = "steelblue", color = "steelblue", label = TRUE, lab.pos = "in", lab.col = "white") # Change colors by groups: dose # Use custom color palette ggbarplot(df, "dose", "len", color = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Change fill and outline colors by groups ggbarplot(df, "dose", "len", fill = "dose", color = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Plot with multiple groups # +++++++++++++++++++++ # Create some data df2 <- data.frame(supp=rep(c("VC", "OJ"), each=3), dose=rep(c("D0.5", "D1", "D2"),2), len=c(6.8, 15, 33, 4.2, 10, 29.5)) print(df2) # Plot "len" by "dose" and change color by a second group: "supp" # Add labels inside bars ggbarplot(df2, "dose", "len", fill = "supp", color = "supp", palette = "Paired", label = TRUE, lab.col = "white", lab.pos = "in") # Change position: Interleaved (dodged) bar plot ggbarplot(df2, "dose", "len", fill = "supp", color = "supp", palette = "Paired", label = TRUE, position = position_dodge(0.9)) # Add points and errors # ++++++++++++++++++++++++++ # Data: ToothGrowth data set we'll be used. df3 <- ToothGrowth head(df3, 10) # It can be seen that for each group we have # different values ggbarplot(df3, x = "dose", y = "len") # Visualize the mean of each group ggbarplot(df3, x = "dose", y = "len", add = "mean") # Add error bars: mean_se # (other values include: mean_sd, mean_ci, median_iqr, ....) # Add labels ggbarplot(df3, x = "dose", y = "len", add = "mean_se", label = TRUE, lab.vjust = -1.6) # Use only "upper_errorbar" ggbarplot(df3, x = "dose", y = "len", add = "mean_se", error.plot = "upper_errorbar") # Change error.plot to "pointrange" ggbarplot(df3, x = "dose", y = "len", add = "mean_se", error.plot = "pointrange") # Add jitter points and errors (mean_se) ggbarplot(df3, x = "dose", y = "len", add = c("mean_se", "jitter")) # Add dot and errors (mean_se) ggbarplot(df3, x = "dose", y = "len", add = c("mean_se", "dotplot")) # Multiple groups with error bars and jitter point ggbarplot(df3, x = "dose", y = "len", color = "supp", add = "mean_se", palette = c("#00AFBB", "#E7B800"), position = position_dodge())
# Data df <- data.frame(dose=c("D0.5", "D1", "D2"), len=c(4.2, 10, 29.5)) print(df) # Basic plot with label outsite # +++++++++++++++++++++++++++ ggbarplot(df, x = "dose", y = "len", label = TRUE, label.pos = "out") # Change width ggbarplot(df, x = "dose", y = "len", width = 0.5) # Change the plot orientation: horizontal ggbarplot(df, "dose", "len", orientation = "horiz") # Change the default order of items ggbarplot(df, "dose", "len", order = c("D2", "D1", "D0.5")) # Change colors # +++++++++++++++++++++++++++ # Change fill and outline color # add labels inside bars ggbarplot(df, "dose", "len", fill = "steelblue", color = "steelblue", label = TRUE, lab.pos = "in", lab.col = "white") # Change colors by groups: dose # Use custom color palette ggbarplot(df, "dose", "len", color = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Change fill and outline colors by groups ggbarplot(df, "dose", "len", fill = "dose", color = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Plot with multiple groups # +++++++++++++++++++++ # Create some data df2 <- data.frame(supp=rep(c("VC", "OJ"), each=3), dose=rep(c("D0.5", "D1", "D2"),2), len=c(6.8, 15, 33, 4.2, 10, 29.5)) print(df2) # Plot "len" by "dose" and change color by a second group: "supp" # Add labels inside bars ggbarplot(df2, "dose", "len", fill = "supp", color = "supp", palette = "Paired", label = TRUE, lab.col = "white", lab.pos = "in") # Change position: Interleaved (dodged) bar plot ggbarplot(df2, "dose", "len", fill = "supp", color = "supp", palette = "Paired", label = TRUE, position = position_dodge(0.9)) # Add points and errors # ++++++++++++++++++++++++++ # Data: ToothGrowth data set we'll be used. df3 <- ToothGrowth head(df3, 10) # It can be seen that for each group we have # different values ggbarplot(df3, x = "dose", y = "len") # Visualize the mean of each group ggbarplot(df3, x = "dose", y = "len", add = "mean") # Add error bars: mean_se # (other values include: mean_sd, mean_ci, median_iqr, ....) # Add labels ggbarplot(df3, x = "dose", y = "len", add = "mean_se", label = TRUE, lab.vjust = -1.6) # Use only "upper_errorbar" ggbarplot(df3, x = "dose", y = "len", add = "mean_se", error.plot = "upper_errorbar") # Change error.plot to "pointrange" ggbarplot(df3, x = "dose", y = "len", add = "mean_se", error.plot = "pointrange") # Add jitter points and errors (mean_se) ggbarplot(df3, x = "dose", y = "len", add = c("mean_se", "jitter")) # Add dot and errors (mean_se) ggbarplot(df3, x = "dose", y = "len", add = c("mean_se", "dotplot")) # Multiple groups with error bars and jitter point ggbarplot(df3, x = "dose", y = "len", color = "supp", add = "mean_se", palette = c("#00AFBB", "#E7B800"), position = position_dodge())
Create a box plot with points. Box plots display a group of numerical data through their quartiles.
ggboxplot( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "white", palette = NULL, title = NULL, xlab = NULL, ylab = NULL, bxp.errorbar = FALSE, bxp.errorbar.width = 0.4, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, linetype = "solid", size = NULL, width = 0.7, notch = FALSE, outlier.shape = 19, select = NULL, remove = NULL, order = NULL, add = "none", add.params = list(), error.plot = "pointrange", label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, ggtheme = theme_pubr(), ... )
ggboxplot( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "white", palette = NULL, title = NULL, xlab = NULL, ylab = NULL, bxp.errorbar = FALSE, bxp.errorbar.width = 0.4, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, linetype = "solid", size = NULL, width = 0.7, notch = FALSE, outlier.shape = 19, select = NULL, remove = NULL, order = NULL, add = "none", add.params = list(), error.plot = "pointrange", label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
character string containing the name of x variable. |
y |
character vector containing one or more variables to plot |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color |
outline color. |
fill |
fill color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
bxp.errorbar |
logical value. If TRUE, shows error bars of box plots. |
bxp.errorbar.width |
numeric value specifying the width of box plot error bars. Default is 0.4. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
linetype |
line types. |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
width |
numeric value between 0 and 1 specifying box width. |
notch |
If |
outlier.shape |
point shape of outlier. Default is 19. To hide outlier,
specify |
select |
character vector specifying which items to display. |
remove |
character vector specifying which items to remove from the plot. |
order |
character vector specifying the order of items. |
add |
character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see ?desc_statby for more details. |
add.params |
parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
error.plot |
plot type used to visualize error. Allowed values are one of c("pointrange", "linerange", "crossbar", "errorbar", "upper_errorbar", "lower_errorbar", "upper_pointrange", "lower_pointrange", "upper_linerange", "lower_linerange"). Default value is "pointrange" or "errorbar". Used only when add != "none" and add contains one "mean_*" or "med_*" where "*" = sd, se, .... |
label |
the name of the column containing point labels. Can be also a character vector with length = nrow(data). |
font.label |
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain"). |
label.select |
can be of two formats:
|
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to
|
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
Suggested values are one of c("dotplot", "jitter").
ggpar
, ggviolin
, ggdotplot
and ggstripchart
.
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot # +++++++++++++++++++++++++++ # width: change box plots width ggboxplot(df, x = "dose", y = "len", width = 0.8) # Change orientation: horizontal ggboxplot(df, "dose", "len", orientation = "horizontal") # Notched box plot ggboxplot(df, x = "dose", y = "len", notch = TRUE) # Add dots # ++++++++++++++++++++++++++ ggboxplot(df, x = "dose", y = "len", add = "dotplot") # Add jitter points and change the shape by groups ggboxplot(df, x = "dose", y = "len", add = "jitter", shape = "dose") # Select and order items # ++++++++++++++++++++++++++++++ # Select which items to display: "0.5" and "2" ggboxplot(df, "dose", "len", select = c("0.5", "2")) # Change the default order of items ggboxplot(df, "dose", "len", order = c("2", "1", "0.5")) # Change colors # +++++++++++++++++++++++++++ # Change outline and fill colors ggboxplot(df, "dose", "len", color = "black", fill = "gray") # Change outline colors by groups: dose # Use custom color palette # Add jitter points and change the shape by groups ggboxplot(df, "dose", "len", color = "dose", palette =c("#00AFBB", "#E7B800", "#FC4E07"), add = "jitter", shape = "dose") # Change fill color by groups: dose ggboxplot(df, "dose", "len", fill = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Box plot with multiple groups # +++++++++++++++++++++ # fill or color box plot by a second group : "supp" ggboxplot(df, "dose", "len", color = "supp", palette = c("#00AFBB", "#E7B800"))
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot # +++++++++++++++++++++++++++ # width: change box plots width ggboxplot(df, x = "dose", y = "len", width = 0.8) # Change orientation: horizontal ggboxplot(df, "dose", "len", orientation = "horizontal") # Notched box plot ggboxplot(df, x = "dose", y = "len", notch = TRUE) # Add dots # ++++++++++++++++++++++++++ ggboxplot(df, x = "dose", y = "len", add = "dotplot") # Add jitter points and change the shape by groups ggboxplot(df, x = "dose", y = "len", add = "jitter", shape = "dose") # Select and order items # ++++++++++++++++++++++++++++++ # Select which items to display: "0.5" and "2" ggboxplot(df, "dose", "len", select = c("0.5", "2")) # Change the default order of items ggboxplot(df, "dose", "len", order = c("2", "1", "0.5")) # Change colors # +++++++++++++++++++++++++++ # Change outline and fill colors ggboxplot(df, "dose", "len", color = "black", fill = "gray") # Change outline colors by groups: dose # Use custom color palette # Add jitter points and change the shape by groups ggboxplot(df, "dose", "len", color = "dose", palette =c("#00AFBB", "#E7B800", "#FC4E07"), add = "jitter", shape = "dose") # Change fill color by groups: dose ggboxplot(df, "dose", "len", fill = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Box plot with multiple groups # +++++++++++++++++++++ # fill or color box plot by a second group : "supp" ggboxplot(df, "dose", "len", color = "supp", palette = c("#00AFBB", "#E7B800"))
Create a density plot.
ggdensity( data, x, y = "density", combine = FALSE, merge = FALSE, color = "black", fill = NA, palette = NULL, size = NULL, linetype = "solid", alpha = 0.5, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, add = c("none", "mean", "median"), add.params = list(linetype = "dashed"), rug = FALSE, label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, ggtheme = theme_pubr(), ... )
ggdensity( data, x, y = "density", combine = FALSE, merge = FALSE, color = "black", fill = NA, palette = NULL, size = NULL, linetype = "solid", alpha = 0.5, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, add = c("none", "mean", "median"), add.params = list(linetype = "dashed"), rug = FALSE, label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
variable to be drawn. |
y |
one of "density" or "count". |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color , fill
|
density line color and fill color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
linetype |
line type. See |
alpha |
numeric value specifying fill color transparency. Value should be in [0, 1], where 0 is full transparency and 1 is no transparency. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
add |
allowed values are one of "mean" or "median" (for adding mean or median line, respectively). |
add.params |
parameters (color, size, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
rug |
logical value. If TRUE, add marginal rug. |
label |
the name of the column containing point labels. Can be also a character vector with length = nrow(data). |
font.label |
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain"). |
label.select |
can be of two formats:
|
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to
|
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
gghistogram
and ggpar
.
# Create some data format set.seed(1234) wdata = data.frame( sex = factor(rep(c("F", "M"), each=200)), weight = c(rnorm(200, 55), rnorm(200, 58))) head(wdata, 4) # Basic density plot # Add mean line and marginal rug ggdensity(wdata, x = "weight", fill = "lightgray", add = "mean", rug = TRUE) # Change outline colors by groups ("sex") # Use custom palette ggdensity(wdata, x = "weight", add = "mean", rug = TRUE, color = "sex", palette = c("#00AFBB", "#E7B800")) # Change outline and fill colors by groups ("sex") # Use custom palette ggdensity(wdata, x = "weight", add = "mean", rug = TRUE, color = "sex", fill = "sex", palette = c("#00AFBB", "#E7B800"))
# Create some data format set.seed(1234) wdata = data.frame( sex = factor(rep(c("F", "M"), each=200)), weight = c(rnorm(200, 55), rnorm(200, 58))) head(wdata, 4) # Basic density plot # Add mean line and marginal rug ggdensity(wdata, x = "weight", fill = "lightgray", add = "mean", rug = TRUE) # Change outline colors by groups ("sex") # Use custom palette ggdensity(wdata, x = "weight", add = "mean", rug = TRUE, color = "sex", palette = c("#00AFBB", "#E7B800")) # Change outline and fill colors by groups ("sex") # Use custom palette ggdensity(wdata, x = "weight", add = "mean", rug = TRUE, color = "sex", fill = "sex", palette = c("#00AFBB", "#E7B800"))
Create a donut chart.
ggdonutchart( data, x, label = x, lab.pos = c("out", "in"), lab.adjust = 0, lab.font = c(4, "plain", "black"), font.family = "", color = "black", fill = "white", palette = NULL, size = NULL, ggtheme = theme_pubr(), ... )
ggdonutchart( data, x, label = x, lab.pos = c("out", "in"), lab.adjust = 0, lab.font = c(4, "plain", "black"), font.family = "", color = "black", fill = "white", palette = NULL, size = NULL, ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
variable containing values for drawing. |
label |
variable specifying the label of each slice. |
lab.pos |
character specifying the position for labels. Allowed values are "out" (for outside) or "in" (for inside). |
lab.adjust |
numeric value, used to adjust label position when lab.pos = "in". Increase or decrease this value to see the effect. |
lab.font |
a vector of length 3 indicating respectively the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of label font. For example lab.font= c(4, "bold", "red"). |
font.family |
character vector specifying font family. |
color , fill
|
outline and fill colors. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to be passed to ggpar(). |
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Data: Create some data # +++++++++++++++++++++++++++++++ df <- data.frame( group = c("Male", "Female", "Child"), value = c(25, 25, 50)) head(df) # Basic pie charts # ++++++++++++++++++++++++++++++++ ggdonutchart(df, "value", label = "group") # Change color # ++++++++++++++++++++++++++++++++ # Change fill color by group # set line color to white # Use custom color palette ggdonutchart(df, "value", label = "group", fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07") ) # Change label # ++++++++++++++++++++++++++++++++ # Show group names and value as labels labs <- paste0(df$group, " (", df$value, "%)") ggdonutchart(df, "value", label = labs, fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Change the position and font color of labels ggdonutchart(df, "value", label = labs, lab.pos = "in", lab.font = "white", fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07"))
# Data: Create some data # +++++++++++++++++++++++++++++++ df <- data.frame( group = c("Male", "Female", "Child"), value = c(25, 25, 50)) head(df) # Basic pie charts # ++++++++++++++++++++++++++++++++ ggdonutchart(df, "value", label = "group") # Change color # ++++++++++++++++++++++++++++++++ # Change fill color by group # set line color to white # Use custom color palette ggdonutchart(df, "value", label = "group", fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07") ) # Change label # ++++++++++++++++++++++++++++++++ # Show group names and value as labels labs <- paste0(df$group, " (", df$value, "%)") ggdonutchart(df, "value", label = labs, fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Change the position and font color of labels ggdonutchart(df, "value", label = labs, lab.pos = "in", lab.font = "white", fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07"))
Draw a Cleveland dot plot.
ggdotchart( data, x, y, group = NULL, combine = FALSE, color = "black", palette = NULL, shape = 19, size = NULL, dot.size = size, sorting = c("ascending", "descending", "none"), add = c("none", "segment"), add.params = list(), x.text.col = TRUE, rotate = FALSE, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, select = NULL, remove = NULL, order = NULL, label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, position = "identity", ggtheme = theme_pubr(), ... ) theme_cleveland(rotate = TRUE)
ggdotchart( data, x, y, group = NULL, combine = FALSE, color = "black", palette = NULL, shape = 19, size = NULL, dot.size = size, sorting = c("ascending", "descending", "none"), add = c("none", "segment"), add.params = list(), x.text.col = TRUE, rotate = FALSE, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, select = NULL, remove = NULL, order = NULL, label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, position = "identity", ggtheme = theme_pubr(), ... ) theme_cleveland(rotate = TRUE)
data |
a data frame |
x , y
|
x and y variables for drawing. |
group |
an optional column name indicating how the elements of x are grouped. |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
color , size
|
points color and size. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
shape |
point shape. See |
dot.size |
numeric value specifying the dot size. |
sorting |
a character vector for sorting into ascending or descending order. Allowed values are one of "descending", "ascending" and "none". Partial match are allowed (e.g. sorting = "desc" or "asc"). Default is "descending". |
add |
character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see ?desc_statby for more details. |
add.params |
parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
x.text.col |
logical. If TRUE (default), x axis texts are colored by groups. |
rotate |
logical value. If TRUE, rotate the graph by setting the plot orientation to horizontal. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
select |
character vector specifying which items to display. |
remove |
character vector specifying which items to remove from the plot. |
order |
character vector specifying the order of items. |
label |
the name of the column containing point labels. |
font.label |
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain"). |
label.select |
can be of two formats:
|
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
position |
Position adjustment, either as a string, or the result of a call to a position adjustment function. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to |
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) df$name <- rownames(df) head(df[, c("wt", "mpg", "cyl")], 3) # Basic plot ggdotchart(df, x = "name", y ="mpg", ggtheme = theme_bw()) # Change colors by group cyl ggdotchart(df, x = "name", y = "mpg", group = "cyl", color = "cyl", palette = c('#999999','#E69F00','#56B4E9'), rotate = TRUE, sorting = "descending", ggtheme = theme_bw(), y.text.col = TRUE ) # Plot with multiple groups # +++++++++++++++++++++ # Create some data df2 <- data.frame(supp=rep(c("VC", "OJ"), each=3), dose=rep(c("D0.5", "D1", "D2"),2), len=c(6.8, 15, 33, 4.2, 10, 29.5)) print(df2) ggdotchart(df2, x = "dose", y = "len", color = "supp", size = 3, add = "segment", add.params = list(color = "lightgray", size = 1.5), position = position_dodge(0.3), palette = "jco", ggtheme = theme_pubclean() )
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) df$name <- rownames(df) head(df[, c("wt", "mpg", "cyl")], 3) # Basic plot ggdotchart(df, x = "name", y ="mpg", ggtheme = theme_bw()) # Change colors by group cyl ggdotchart(df, x = "name", y = "mpg", group = "cyl", color = "cyl", palette = c('#999999','#E69F00','#56B4E9'), rotate = TRUE, sorting = "descending", ggtheme = theme_bw(), y.text.col = TRUE ) # Plot with multiple groups # +++++++++++++++++++++ # Create some data df2 <- data.frame(supp=rep(c("VC", "OJ"), each=3), dose=rep(c("D0.5", "D1", "D2"),2), len=c(6.8, 15, 33, 4.2, 10, 29.5)) print(df2) ggdotchart(df2, x = "dose", y = "len", color = "supp", size = 3, add = "segment", add.params = list(color = "lightgray", size = 1.5), position = position_dodge(0.3), palette = "jco", ggtheme = theme_pubclean() )
Create a dot plot.
ggdotplot( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "lightgray", palette = NULL, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, size = NULL, binwidth = NULL, select = NULL, remove = NULL, order = NULL, add = "mean_se", add.params = list(), error.plot = "pointrange", label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, ggtheme = theme_pubr(), ... )
ggdotplot( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "lightgray", palette = NULL, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, size = NULL, binwidth = NULL, select = NULL, remove = NULL, order = NULL, add = "mean_se", add.params = list(), error.plot = "pointrange", label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
character string containing the name of x variable. |
y |
character vector containing one or more variables to plot |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color |
outline color. |
fill |
fill color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
binwidth |
numeric value specifying bin width. use value between 0 and 1 when you have a strong dense dotplot. For example binwidth = 0.2. |
select |
character vector specifying which items to display. |
remove |
character vector specifying which items to remove from the plot. |
order |
character vector specifying the order of items. |
add |
character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see ?desc_statby for more details. |
add.params |
parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
error.plot |
plot type used to visualize error. Allowed values are one of c("pointrange", "linerange", "crossbar", "errorbar", "upper_errorbar", "lower_errorbar", "upper_pointrange", "lower_pointrange", "upper_linerange", "lower_linerange"). Default value is "pointrange" or "errorbar". Used only when add != "none" and add contains one "mean_*" or "med_*" where "*" = sd, se, .... |
label |
the name of the column containing point labels. Can be also a character vector with length = nrow(data). |
font.label |
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain"). |
label.select |
can be of two formats:
|
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to
|
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
ggpar
, ggviolin
, ggboxplot
and ggstripchart
.
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot with summary statistics : mean_sd # +++++++++++++++++++++++++++ ggdotplot(df, x = "dose", y = "len", add = "mean_sd") # Change error.plot to "crossbar" ggdotplot(df, x = "dose", y = "len", add = "mean_sd", add.params = list(width = 0.5), error.plot = "crossbar") # Add box plot ggdotplot(df, x = "dose", y = "len", add = "boxplot") # Add violin + mean_sd ggdotplot(df, x = "dose", y = "len", add = c("violin", "mean_sd")) # Change colors # +++++++++++++++++++++++++++ # Change fill and outline colors by groups: dose # Use custom color palette ggdotplot(df, "dose", "len", add = "boxplot", color = "dose", fill = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Plot with multiple groups # +++++++++++++++++++++ # Change color by a second group : "supp" ggdotplot(df, "dose", "len", fill = "supp", color = "supp", palette = c("#00AFBB", "#E7B800"))
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot with summary statistics : mean_sd # +++++++++++++++++++++++++++ ggdotplot(df, x = "dose", y = "len", add = "mean_sd") # Change error.plot to "crossbar" ggdotplot(df, x = "dose", y = "len", add = "mean_sd", add.params = list(width = 0.5), error.plot = "crossbar") # Add box plot ggdotplot(df, x = "dose", y = "len", add = "boxplot") # Add violin + mean_sd ggdotplot(df, x = "dose", y = "len", add = c("violin", "mean_sd")) # Change colors # +++++++++++++++++++++++++++ # Change fill and outline colors by groups: dose # Use custom color palette ggdotplot(df, "dose", "len", add = "boxplot", color = "dose", fill = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Plot with multiple groups # +++++++++++++++++++++ # Change color by a second group : "supp" ggdotplot(df, "dose", "len", fill = "supp", color = "supp", palette = c("#00AFBB", "#E7B800"))
Empirical Cumulative Density Function (ECDF).
ggecdf( data, x, combine = FALSE, merge = FALSE, color = "black", palette = NULL, size = NULL, linetype = "solid", title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, ggtheme = theme_pubr(), ... )
ggecdf( data, x, combine = FALSE, merge = FALSE, color = "black", palette = NULL, size = NULL, linetype = "solid", title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
variable to be drawn. |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color |
line and point color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
size |
line and point size. |
linetype |
line type. See |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Create some data format set.seed(1234) wdata = data.frame( sex = factor(rep(c("F", "M"), each=200)), weight = c(rnorm(200, 55), rnorm(200, 58))) head(wdata, 4) # Basic ECDF plot ggecdf(wdata, x = "weight") # Change colors and linetype by groups ("sex") # Use custom palette ggecdf(wdata, x = "weight", color = "sex", linetype = "sex", palette = c("#00AFBB", "#E7B800"))
# Create some data format set.seed(1234) wdata = data.frame( sex = factor(rep(c("F", "M"), each=200)), weight = c(rnorm(200, 55), rnorm(200, 58))) head(wdata, 4) # Basic ECDF plot ggecdf(wdata, x = "weight") # Change colors and linetype by groups ("sex") # Use custom palette ggecdf(wdata, x = "weight", color = "sex", linetype = "sex", palette = c("#00AFBB", "#E7B800"))
Visualizing error.
ggerrorplot( data, x, y, desc_stat = "mean_se", numeric.x.axis = FALSE, combine = FALSE, merge = FALSE, color = "black", fill = "white", palette = NULL, size = NULL, width = NULL, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, select = NULL, remove = NULL, order = NULL, add = "none", add.params = list(), error.plot = "pointrange", ci = 0.95, position = position_dodge(), ggtheme = theme_pubr(), ... )
ggerrorplot( data, x, y, desc_stat = "mean_se", numeric.x.axis = FALSE, combine = FALSE, merge = FALSE, color = "black", fill = "white", palette = NULL, size = NULL, width = NULL, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, select = NULL, remove = NULL, order = NULL, add = "none", add.params = list(), error.plot = "pointrange", ci = 0.95, position = position_dodge(), ggtheme = theme_pubr(), ... )
data |
a data frame |
x , y
|
x and y variables for drawing. |
desc_stat |
descriptive statistics to be used for visualizing errors. Default value is "mean_se".
Allowed values are one of , "mean", "mean_se", "mean_sd", "mean_ci", "mean_range",
"median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see |
numeric.x.axis |
logical. If TRUE, x axis will be treated as numeric. Default is FALSE. |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color , fill
|
outline and fill colors. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
width |
numeric value between 0 and 1 specifying box width. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
select |
character vector specifying which items to display. |
remove |
character vector specifying which items to remove from the plot. |
order |
character vector specifying the order of items. Considered only when x axis is a factor variable. |
add |
character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see ?desc_statby for more details. |
add.params |
parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
error.plot |
plot type used to visualize error. Allowed values are one of c("pointrange", "linerange", "crossbar", "errorbar", "upper_errorbar", "lower_errorbar", "upper_pointrange", "lower_pointrange", "upper_linerange", "lower_linerange"). Default value is "pointrange" or "errorbar". Used only when add != "none" and add contains one "mean_*" or "med_*" where "*" = sd, se, .... |
ci |
the percent range of the confidence interval (default is 0.95). |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to be passed to ggpar(). |
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Data: ToothGrowth data set we'll be used. df<- ToothGrowth head(df, 10) # Plot mean_se ggerrorplot(df, x = "dose", y = "len") # Change desc_stat to mean_sd # (other values include: mean_sd, mean_ci, median_iqr, ....) # Add labels ggerrorplot(df, x = "dose", y = "len", desc_stat = "mean_sd") # Change error.plot to "errorbar" and add mean point # Visualize the mean of each group ggerrorplot(df, x = "dose", y = "len", add = "mean", error.plot = "errorbar") # Horizontal plot ggerrorplot(df, x = "dose", y = "len", add = "mean", error.plot = "errorbar", orientation = "horizontal") # Change error.plot to "crossbar" ggerrorplot(df, x = "dose", y = "len", error.plot = "crossbar", width = 0.5) # Add jitter points and errors (mean_se) ggerrorplot(df, x = "dose", y = "len", add = "jitter") # Add dot and errors (mean_se) ggerrorplot(df, x = "dose", y = "len", add = "dotplot") # Multiple groups with error bars and jitter point ggerrorplot(df, x = "dose", y = "len", color = "supp", palette = "Paired", error.plot = "pointrange", position = position_dodge(0.5))
# Data: ToothGrowth data set we'll be used. df<- ToothGrowth head(df, 10) # Plot mean_se ggerrorplot(df, x = "dose", y = "len") # Change desc_stat to mean_sd # (other values include: mean_sd, mean_ci, median_iqr, ....) # Add labels ggerrorplot(df, x = "dose", y = "len", desc_stat = "mean_sd") # Change error.plot to "errorbar" and add mean point # Visualize the mean of each group ggerrorplot(df, x = "dose", y = "len", add = "mean", error.plot = "errorbar") # Horizontal plot ggerrorplot(df, x = "dose", y = "len", add = "mean", error.plot = "errorbar", orientation = "horizontal") # Change error.plot to "crossbar" ggerrorplot(df, x = "dose", y = "len", error.plot = "crossbar", width = 0.5) # Add jitter points and errors (mean_se) ggerrorplot(df, x = "dose", y = "len", add = "jitter") # Add dot and errors (mean_se) ggerrorplot(df, x = "dose", y = "len", add = "dotplot") # Multiple groups with error bars and jitter point ggerrorplot(df, x = "dose", y = "len", color = "supp", palette = "Paired", error.plot = "pointrange", position = position_dodge(0.5))
Export ggplots
ggexport( ..., plotlist = NULL, filename = NULL, ncol = NULL, nrow = NULL, width = 480, height = 480, pointsize = 12, res = NA, verbose = TRUE )
ggexport( ..., plotlist = NULL, filename = NULL, ncol = NULL, nrow = NULL, width = 480, height = 480, pointsize = 12, res = NA, verbose = TRUE )
... |
list of plots to be arranged into the grid. The plots can be either
ggplot2 plot objects, arbitrary gtables or an object of class
|
plotlist |
(optional) list of plots to display. |
filename |
File name to create on disk. |
ncol |
(optional) number of columns in the plot grid. |
nrow |
(optional) number of rows in the plot grid. |
width , height
|
plot width and height, respectively (example, width = 800, height = 800). Applied only to raster plots: "png", "jpeg", "jpg", "bmp" and "tiff". |
pointsize |
the default pointsize of plotted text (example, pointsize = 8). Used only for raster plots. |
res |
the resolution in ppi (example, res = 250). Used only for raster plots. |
verbose |
logical. If TRUE, show message. |
Alboukadel Kassambara <[email protected]>
## Not run: require("magrittr") # Load data data("ToothGrowth") df <- ToothGrowth df$dose <- as.factor(df$dose) # Box plot bxp <- ggboxplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Dot plot dp <- ggdotplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Density plot dens <- ggdensity(df, x = "len", fill = "dose", palette = "jco") # Export to pdf ggarrange(bxp, dp, dens, ncol = 2) %>% ggexport(filename = "test.pdf") # Export to png ggarrange(bxp, dp, dens, ncol = 2) %>% ggexport(filename = "test.png") ## End(Not run)
## Not run: require("magrittr") # Load data data("ToothGrowth") df <- ToothGrowth df$dose <- as.factor(df$dose) # Box plot bxp <- ggboxplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Dot plot dp <- ggdotplot(df, x = "dose", y = "len", color = "dose", palette = "jco") # Density plot dens <- ggdensity(df, x = "len", fill = "dose", palette = "jco") # Export to pdf ggarrange(bxp, dp, dens, ncol = 2) %>% ggexport(filename = "test.pdf") # Export to png ggarrange(bxp, dp, dens, ncol = 2) %>% ggexport(filename = "test.png") ## End(Not run)
Create a histogram plot.
gghistogram( data, x, y = "count", combine = FALSE, merge = FALSE, weight = NULL, color = "black", fill = NA, palette = NULL, size = NULL, linetype = "solid", alpha = 0.5, bins = NULL, binwidth = NULL, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, add = c("none", "mean", "median"), add.params = list(linetype = "dashed"), rug = FALSE, add_density = FALSE, label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, position = position_identity(), ggtheme = theme_pubr(), ... )
gghistogram( data, x, y = "count", combine = FALSE, merge = FALSE, weight = NULL, color = "black", fill = NA, palette = NULL, size = NULL, linetype = "solid", alpha = 0.5, bins = NULL, binwidth = NULL, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, add = c("none", "mean", "median"), add.params = list(linetype = "dashed"), rug = FALSE, add_density = FALSE, label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, position = position_identity(), ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
variable to be drawn. |
y |
one of "density" or "count". |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
weight |
a variable name available in the input data for creating a weighted histogram. |
color , fill
|
histogram line color and fill color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
linetype |
line type. See |
alpha |
numeric value specifying fill color transparency. Value should be in [0, 1], where 0 is full transparency and 1 is no transparency. |
bins |
Number of bins. Defaults to 30. |
binwidth |
numeric value specifying bin width. use value between 0 and 1 when you have a strong dense dotplot. For example binwidth = 0.2. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
add |
allowed values are one of "mean" or "median" (for adding mean or median line, respectively). |
add.params |
parameters (color, size, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
rug |
logical value. If TRUE, add marginal rug. |
add_density |
logical value. If TRUE, add density curves. |
label |
the name of the column containing point labels. Can be also a character vector with length = nrow(data). |
font.label |
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain"). |
label.select |
can be of two formats:
|
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
position |
Position adjustment, either as a string, or the result of a call to a position adjustment function. Allowed values include "identity", "stack", "dodge". |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to
|
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Create some data format set.seed(1234) wdata = data.frame( sex = factor(rep(c("F", "M"), each=200)), weight = c(rnorm(200, 55), rnorm(200, 58))) head(wdata, 4) # Basic density plot # Add mean line and marginal rug gghistogram(wdata, x = "weight", fill = "lightgray", add = "mean", rug = TRUE) # Change outline colors by groups ("sex") # Use custom color palette gghistogram(wdata, x = "weight", add = "mean", rug = TRUE, color = "sex", palette = c("#00AFBB", "#E7B800")) # Change outline and fill colors by groups ("sex") # Use custom color palette gghistogram(wdata, x = "weight", add = "mean", rug = TRUE, color = "sex", fill = "sex", palette = c("#00AFBB", "#E7B800")) # Combine histogram and density plots gghistogram(wdata, x = "weight", add = "mean", rug = TRUE, fill = "sex", palette = c("#00AFBB", "#E7B800"), add_density = TRUE) # Weighted histogram gghistogram(iris, x = "Sepal.Length", weight = "Petal.Length")
# Create some data format set.seed(1234) wdata = data.frame( sex = factor(rep(c("F", "M"), each=200)), weight = c(rnorm(200, 55), rnorm(200, 58))) head(wdata, 4) # Basic density plot # Add mean line and marginal rug gghistogram(wdata, x = "weight", fill = "lightgray", add = "mean", rug = TRUE) # Change outline colors by groups ("sex") # Use custom color palette gghistogram(wdata, x = "weight", add = "mean", rug = TRUE, color = "sex", palette = c("#00AFBB", "#E7B800")) # Change outline and fill colors by groups ("sex") # Use custom color palette gghistogram(wdata, x = "weight", add = "mean", rug = TRUE, color = "sex", fill = "sex", palette = c("#00AFBB", "#E7B800")) # Combine histogram and density plots gghistogram(wdata, x = "weight", add = "mean", rug = TRUE, fill = "sex", palette = c("#00AFBB", "#E7B800"), add_density = TRUE) # Weighted histogram gghistogram(iris, x = "Sepal.Length", weight = "Petal.Length")
Create a line plot.
ggline( data, x, y, group = 1, numeric.x.axis = FALSE, combine = FALSE, merge = FALSE, color = "black", palette = NULL, linetype = "solid", plot_type = c("b", "l", "p"), size = 0.5, shape = 19, stroke = NULL, point.size = size, point.color = color, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, select = NULL, remove = NULL, order = NULL, add = "none", add.params = list(), error.plot = "errorbar", label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, show.line.label = FALSE, position = "identity", ggtheme = theme_pubr(), ... )
ggline( data, x, y, group = 1, numeric.x.axis = FALSE, combine = FALSE, merge = FALSE, color = "black", palette = NULL, linetype = "solid", plot_type = c("b", "l", "p"), size = 0.5, shape = 19, stroke = NULL, point.size = size, point.color = color, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, select = NULL, remove = NULL, order = NULL, add = "none", add.params = list(), error.plot = "errorbar", label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, show.line.label = FALSE, position = "identity", ggtheme = theme_pubr(), ... )
data |
a data frame |
x , y
|
x and y variables for drawing. |
group |
grouping variable to connect points by line. Allowed values are 1 (for one line, one group) or a character vector specifying the name of the grouping variable (case of multiple lines). |
numeric.x.axis |
logical. If TRUE, x axis will be treated as numeric. Default is FALSE. |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color |
line colors. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
linetype |
line type. |
plot_type |
plot type. Allowed values are one of "b" for both line and point; "l" for line only; and "p" for point only. Default is "b". |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
shape |
point shapes. |
stroke |
point stroke. Used only for shapes 21-24 to control the thickness of points border. |
point.size |
point size. |
point.color |
point color. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
select |
character vector specifying which items to display. |
remove |
character vector specifying which items to remove from the plot. |
order |
character vector specifying the order of items. |
add |
character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see ?desc_statby for more details. |
add.params |
parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
error.plot |
plot type used to visualize error. Allowed values are one of c("pointrange", "linerange", "crossbar", "errorbar", "upper_errorbar", "lower_errorbar", "upper_pointrange", "lower_pointrange", "upper_linerange", "lower_linerange"). Default value is "pointrange" or "errorbar". Used only when add != "none" and add contains one "mean_*" or "med_*" where "*" = sd, se, .... |
label |
the name of the column containing point labels. Can be also a character vector with length = nrow(data). |
font.label |
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain"). |
label.select |
can be of two formats:
|
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
show.line.label |
logical value. If TRUE, shows line labels. |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to geom_dotplot. |
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Data df <- data.frame(dose=c("D0.5", "D1", "D2"), len=c(4.2, 10, 29.5)) print(df) # Basic plot # +++++++++++++++++++++++++++ ggline(df, x = "dose", y = "len") # Plot with multiple groups # +++++++++++++++++++++ # Create some data df2 <- data.frame(supp=rep(c("VC", "OJ"), each=3), dose=rep(c("D0.5", "D1", "D2"),2), len=c(6.8, 15, 33, 4.2, 10, 29.5)) print(df2) # Plot "len" by "dose" and # Change line types and point shapes by a second groups: "supp" ggline(df2, "dose", "len", linetype = "supp", shape = "supp") # Change colors # +++++++++++++++++++++ # Change color by group: "supp" # Use custom color palette ggline(df2, "dose", "len", linetype = "supp", shape = "supp", color = "supp", palette = c("#00AFBB", "#E7B800")) # Add points and errors # ++++++++++++++++++++++++++ # Data: ToothGrowth data set we'll be used. df3 <- ToothGrowth head(df3, 10) # It can be seen that for each group we have # different values ggline(df3, x = "dose", y = "len") # Visualize the mean of each group ggline(df3, x = "dose", y = "len", add = "mean") # Add error bars: mean_se # (other values include: mean_sd, mean_ci, median_iqr, ....) # Add labels ggline(df3, x = "dose", y = "len", add = "mean_se") # Change error.plot to "pointrange" ggline(df3, x = "dose", y = "len", add = "mean_se", error.plot = "pointrange") # Add jitter points and errors (mean_se) ggline(df3, x = "dose", y = "len", add = c("mean_se", "jitter")) # Add dot and errors (mean_se) ggline(df3, x = "dose", y = "len", add = c("mean_se", "dotplot"), color = "steelblue") # Add violin and errors (mean_se) ggline(df3, x = "dose", y = "len", add = c("mean_se", "violin"), color = "steelblue") # Multiple groups with error bars # ++++++++++++++++++++++ ggline(df3, x = "dose", y = "len", color = "supp", add = "mean_se", palette = c("#00AFBB", "#E7B800")) # Add jitter ggline(df3, x = "dose", y = "len", color = "supp", add = c("mean_se", "jitter"), palette = c("#00AFBB", "#E7B800")) # Add dot plot ggline(df3, x = "dose", y = "len", color = "supp", add = c("mean_se", "dotplot"), palette = c("#00AFBB", "#E7B800"))
# Data df <- data.frame(dose=c("D0.5", "D1", "D2"), len=c(4.2, 10, 29.5)) print(df) # Basic plot # +++++++++++++++++++++++++++ ggline(df, x = "dose", y = "len") # Plot with multiple groups # +++++++++++++++++++++ # Create some data df2 <- data.frame(supp=rep(c("VC", "OJ"), each=3), dose=rep(c("D0.5", "D1", "D2"),2), len=c(6.8, 15, 33, 4.2, 10, 29.5)) print(df2) # Plot "len" by "dose" and # Change line types and point shapes by a second groups: "supp" ggline(df2, "dose", "len", linetype = "supp", shape = "supp") # Change colors # +++++++++++++++++++++ # Change color by group: "supp" # Use custom color palette ggline(df2, "dose", "len", linetype = "supp", shape = "supp", color = "supp", palette = c("#00AFBB", "#E7B800")) # Add points and errors # ++++++++++++++++++++++++++ # Data: ToothGrowth data set we'll be used. df3 <- ToothGrowth head(df3, 10) # It can be seen that for each group we have # different values ggline(df3, x = "dose", y = "len") # Visualize the mean of each group ggline(df3, x = "dose", y = "len", add = "mean") # Add error bars: mean_se # (other values include: mean_sd, mean_ci, median_iqr, ....) # Add labels ggline(df3, x = "dose", y = "len", add = "mean_se") # Change error.plot to "pointrange" ggline(df3, x = "dose", y = "len", add = "mean_se", error.plot = "pointrange") # Add jitter points and errors (mean_se) ggline(df3, x = "dose", y = "len", add = c("mean_se", "jitter")) # Add dot and errors (mean_se) ggline(df3, x = "dose", y = "len", add = c("mean_se", "dotplot"), color = "steelblue") # Add violin and errors (mean_se) ggline(df3, x = "dose", y = "len", add = c("mean_se", "violin"), color = "steelblue") # Multiple groups with error bars # ++++++++++++++++++++++ ggline(df3, x = "dose", y = "len", color = "supp", add = "mean_se", palette = c("#00AFBB", "#E7B800")) # Add jitter ggline(df3, x = "dose", y = "len", color = "supp", add = c("mean_se", "jitter"), palette = c("#00AFBB", "#E7B800")) # Add dot plot ggline(df3, x = "dose", y = "len", color = "supp", add = c("mean_se", "dotplot"), palette = c("#00AFBB", "#E7B800"))
Make MA-plot which is a scatter plot of log2 fold changes (M, on
the y-axis) versus the average expression signal (A, on the x-axis). M
= log2(x/y)
and A = (log2(x) + log2(y))/2 = log2(xy)*1/2
, where x
and y are respectively the mean of the two groups being compared.
ggmaplot( data, fdr = 0.05, fc = 1.5, genenames = NULL, detection_call = NULL, size = NULL, alpha = 1, seed = 42, font.label = c(12, "plain", "black"), label.rectangle = FALSE, palette = c("#B31B21", "#1465AC", "darkgray"), top = 15, select.top.method = c("padj", "fc"), label.select = NULL, main = NULL, xlab = "Log2 mean expression", ylab = "Log2 fold change", ggtheme = theme_classic(), ... )
ggmaplot( data, fdr = 0.05, fc = 1.5, genenames = NULL, detection_call = NULL, size = NULL, alpha = 1, seed = 42, font.label = c(12, "plain", "black"), label.rectangle = FALSE, palette = c("#B31B21", "#1465AC", "darkgray"), top = 15, select.top.method = c("padj", "fc"), label.select = NULL, main = NULL, xlab = "Log2 mean expression", ylab = "Log2 fold change", ggtheme = theme_classic(), ... )
data |
an object of class DESeqResults, get_diff, DE_Results, matrix or data frame containing the columns baseMean (or baseMeanLog2), log2FoldChange, and padj. Rows are genes. Two possible formats are accepted for the input data:
Terminology:
|
fdr |
Accepted false discovery rate for considering genes as differentially expressed. |
fc |
the fold change threshold. Only genes with a fold change >= fc and padj <= fdr are considered as significantly differentially expressed. |
genenames |
a character vector of length nrow(data) specifying gene names corresponding to each row. Used for point labels. |
detection_call |
a numeric vector with length = nrow(data), specifying if the genes is expressed (value = 1) or not (value = 0). For example detection_call = c(1, 1, 0, 1, 0, 1). Default is NULL. If detection_call column is available in data, it will be used. |
size |
points size. |
alpha |
numeric value betwenn 0 an 1 specifying point alpha for controlling transparency. For example, use alpha = 0.5. |
seed |
Random seed passed to |
font.label |
a vector of length 3 indicating respectively the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of point labels. For example font.label = c(14, "bold", "red"). |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
top |
the number of top genes to be shown on the plot. Use top = 0 to hide to gene labels. |
select.top.method |
methods to be used for selecting top genes. Allowed values include "padj" and "fc" for selecting by adjusted p values or fold changes, respectively. |
label.select |
character vector specifying some labels to show. |
main |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to |
returns a ggplot.
data(diff_express) # Default plot ggmaplot(diff_express, main = expression("Group 1" %->% "Group 2"), fdr = 0.05, fc = 2, size = 0.4, palette = c("#B31B21", "#1465AC", "darkgray"), genenames = as.vector(diff_express$name), legend = "top", top = 20, font.label = c("bold", 11), font.legend = "bold", font.main = "bold", ggtheme = ggplot2::theme_minimal()) # Add rectangle around labels ggmaplot(diff_express, main = expression("Group 1" %->% "Group 2"), fdr = 0.05, fc = 2, size = 0.4, palette = c("#B31B21", "#1465AC", "darkgray"), genenames = as.vector(diff_express$name), legend = "top", top = 20, font.label = c("bold", 11), label.rectangle = TRUE, font.legend = "bold", font.main = "bold", ggtheme = ggplot2::theme_minimal()) # Select specific genes to show # set top = 0, then specify genes using label.select argument ggmaplot(diff_express, main = expression("Group 1" %->% "Group 2"), fdr = 0.05, fc = 2, size = 0.4, genenames = as.vector(diff_express$name), ggtheme = ggplot2::theme_minimal(), top = 0, label.select = c("BUB1", "CD83") )
data(diff_express) # Default plot ggmaplot(diff_express, main = expression("Group 1" %->% "Group 2"), fdr = 0.05, fc = 2, size = 0.4, palette = c("#B31B21", "#1465AC", "darkgray"), genenames = as.vector(diff_express$name), legend = "top", top = 20, font.label = c("bold", 11), font.legend = "bold", font.main = "bold", ggtheme = ggplot2::theme_minimal()) # Add rectangle around labels ggmaplot(diff_express, main = expression("Group 1" %->% "Group 2"), fdr = 0.05, fc = 2, size = 0.4, palette = c("#B31B21", "#1465AC", "darkgray"), genenames = as.vector(diff_express$name), legend = "top", top = 20, font.label = c("bold", 11), label.rectangle = TRUE, font.legend = "bold", font.main = "bold", ggtheme = ggplot2::theme_minimal()) # Select specific genes to show # set top = 0, then specify genes using label.select argument ggmaplot(diff_express, main = expression("Group 1" %->% "Group 2"), fdr = 0.05, fc = 2, size = 0.4, genenames = as.vector(diff_express$name), ggtheme = ggplot2::theme_minimal(), top = 0, label.select = c("BUB1", "CD83") )
Plot paired data.
ggpaired( data, cond1, cond2, x = NULL, y = NULL, id = NULL, color = "black", fill = "white", palette = NULL, width = 0.5, point.size = 1.2, line.size = 0.5, line.color = "black", linetype = "solid", title = NULL, xlab = "Condition", ylab = "Value", facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, ggtheme = theme_pubr(), ... )
ggpaired( data, cond1, cond2, x = NULL, y = NULL, id = NULL, color = "black", fill = "white", palette = NULL, width = 0.5, point.size = 1.2, line.size = 0.5, line.color = "black", linetype = "solid", title = NULL, xlab = "Condition", ylab = "Value", facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, ggtheme = theme_pubr(), ... )
data |
a data frame |
cond1 |
variable name corresponding to the first condition. |
cond2 |
variable name corresponding to the second condition. |
x , y
|
x and y variables, where x is a grouping variable and y contains
values for each group. Considered only when |
id |
variable name corresponding to paired samples' id. Used to connect paired points with lines. |
color |
points and box plot colors. To color by conditions, use color = "condition". |
fill |
box plot fill color. To change fill color by conditions, use fill = "condition". |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
width |
box plot width. |
point.size , line.size
|
point and line size, respectively. |
line.color |
line color. |
linetype |
line type. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
label |
the name of the column containing point labels. Can be also a character vector with length = nrow(data). |
font.label |
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain"). |
label.select |
can be of two formats:
|
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to be passed to ggpar(). |
# Example 1 #:::::::::::::::::::::::::::::::::::::::::: before <-c(200.1, 190.9, 192.7, 213, 241.4, 196.9, 172.2, 185.5, 205.2, 193.7) after <-c(392.9, 393.2, 345.1, 393, 434, 427.9, 422, 383.9, 392.3, 352.2) d <- data.frame(before = before, after = after) ggpaired(d, cond1 = "before", cond2 = "after", fill = "condition", palette = "jco") # Example 2 #:::::::::::::::::::::::::::::::::::::::::: ggpaired(ToothGrowth, x = "supp", y = "len", color = "supp", line.color = "gray", line.size = 0.4, palette = "npg")
# Example 1 #:::::::::::::::::::::::::::::::::::::::::: before <-c(200.1, 190.9, 192.7, 213, 241.4, 196.9, 172.2, 185.5, 205.2, 193.7) after <-c(392.9, 393.2, 345.1, 393, 434, 427.9, 422, 383.9, 392.3, 352.2) d <- data.frame(before = before, after = after) ggpaired(d, cond1 = "before", cond2 = "after", fill = "condition", palette = "jco") # Example 2 #:::::::::::::::::::::::::::::::::::::::::: ggpaired(ToothGrowth, x = "supp", y = "len", color = "supp", line.color = "gray", line.size = 0.4, palette = "npg")
Graphical parameters
ggpar( p, palette = NULL, gradient.cols = NULL, main = NULL, submain = NULL, caption = NULL, xlab = NULL, ylab = NULL, title = NULL, subtitle = NULL, font.main = NULL, font.submain = NULL, font.x = NULL, font.y = NULL, font.caption = NULL, font.title = NULL, font.subtitle = NULL, font.family = "", xlim = NULL, ylim = NULL, xscale = c("none", "log2", "log10", "sqrt"), yscale = c("none", "log2", "log10", "sqrt"), format.scale = FALSE, legend = NULL, legend.title = NULL, font.legend = NULL, ticks = TRUE, tickslab = TRUE, font.tickslab = NULL, font.xtickslab = font.tickslab, font.ytickslab = font.tickslab, x.text.angle = NULL, y.text.angle = NULL, xtickslab.rt = x.text.angle, ytickslab.rt = y.text.angle, xticks.by = NULL, yticks.by = NULL, rotate = FALSE, orientation = c("vertical", "horizontal", "reverse"), ggtheme = NULL, ... )
ggpar( p, palette = NULL, gradient.cols = NULL, main = NULL, submain = NULL, caption = NULL, xlab = NULL, ylab = NULL, title = NULL, subtitle = NULL, font.main = NULL, font.submain = NULL, font.x = NULL, font.y = NULL, font.caption = NULL, font.title = NULL, font.subtitle = NULL, font.family = "", xlim = NULL, ylim = NULL, xscale = c("none", "log2", "log10", "sqrt"), yscale = c("none", "log2", "log10", "sqrt"), format.scale = FALSE, legend = NULL, legend.title = NULL, font.legend = NULL, ticks = TRUE, tickslab = TRUE, font.tickslab = NULL, font.xtickslab = font.tickslab, font.ytickslab = font.tickslab, x.text.angle = NULL, y.text.angle = NULL, xtickslab.rt = x.text.angle, ytickslab.rt = y.text.angle, xticks.by = NULL, yticks.by = NULL, rotate = FALSE, orientation = c("vertical", "horizontal", "reverse"), ggtheme = NULL, ... )
p |
an object of class ggplot or a list of ggplots |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". Can be also a numeric vector of length(groups); in this case a basic color palette is created using the function palette. |
gradient.cols |
vector of colors to use for n-colour gradient. Allowed values include brewer and ggsci color palettes. |
main |
plot main title. |
submain , subtitle
|
plot subtitle. |
caption |
plot caption. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
title |
plot main title. |
font.main , font.submain , font.caption , font.x , font.y
|
a vector of length 3 indicating respectively the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of main title, subtitle, caption, xlab and ylab, respectively. For example font.x = c(14, "bold", "red"). Use font.x = 14, to change only font size; or use font.x = "bold", to change only font face. |
font.title , font.subtitle
|
alias of font.submain and font.submain, respectively. |
font.family |
character vector specifying font family. |
xlim , ylim
|
a numeric vector of length 2, specifying x and y axis limits (minimum and maximum), respectively. e.g.: ylim = c(0, 50). |
xscale , yscale
|
x and y axis scale, respectively. Allowed values are one of c("none", "log2", "log10", "sqrt"); e.g.: yscale="log2". |
format.scale |
logical value. If TRUE, axis tick mark labels will be formatted when xscale or yscale = "log2" or "log10". |
legend |
character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). To remove the legend use legend = "none". Legend position can be also specified using a numeric vector c(x, y); see details section. |
legend.title |
legend title, e.g.: |
font.legend |
legend text font style; e.g.: font.legend = c(10, "plain", "black"). |
ticks |
logical value. Default is TRUE. If FALSE, hide axis tick marks. |
tickslab |
logical value. Default is TRUE. If FALSE, hide axis tick labels. |
font.tickslab , font.xtickslab , font.ytickslab
|
Font style (size, face, color) for tick labels, e.g.: c(14, "bold", "red"). |
x.text.angle , y.text.angle
|
Numeric value specifying the rotation angle of x and y axis tick labels, respectively. Default value is NULL. For vertical x axis texts use x.text.angle = 90. |
xtickslab.rt , ytickslab.rt
|
Same as x.text.angle and y.text.angle, respectively. Will be deprecated in the near future. |
xticks.by , yticks.by
|
numeric value controlling x and y axis breaks, respectively. For example, if yticks.by = 5, a tick mark is shown on every 5. Default value is NULL. |
rotate |
logical value. If TRUE, rotate the graph by setting the plot orientation to horizontal. |
orientation |
change the orientation of the plot. Allowed values are one of c( "vertical", "horizontal", "reverse"). Partial match is allowed. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
not used |
# Load data data("ToothGrowth") df <- ToothGrowth # Basic box plot # +++++++++++++++++++++++++++ p <- ggboxplot(df, x = "dose", y = "len") # Change the plot orientation: horizontal ggpar(p, orientation = "horiz") # Change main title and axis labels # ++++++++++++++++++++++++++++ ggpar(p, main = "Plot of length \n by dose", xlab = "Dose (mg)", ylab = "Length") # Title font styles: 'plain', 'italic', 'bold', 'bold.italic' ggpar(p, main = "Length by dose", font.main = c(14,"bold.italic", "red"), font.x = c(14, "bold", "#2E9FDF"), font.y = c(14, "bold", "#E7B800")) # Hide axis labels ggpar(p, xlab = FALSE, ylab = FALSE) # Change colors # ++++++++++++++++++++++ # Change outline colors by groups: dose p2 <- ggboxplot(df, "dose", "len", color = "dose") p2 # Use custom color palette ggpar(p2, palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Use brewer palette ggpar(p2, palette = "Dark2" ) # Use grey palette ggpar(p2, palette = "grey") # Use scientific journal palette from ggsci package ggpar(p2, palette = "npg") # nature # Axis ticks, limits, scales # +++++++++++++++++++++++++ # Axis ticks labels and rotation ggpar(p, font.tickslab = c(14,"bold", "#993333"), xtickslab.rt = 45, ytickslab.rt = 45) # Hide axis ticks and tick labels ggpar(p, ticks = FALSE, tickslab = FALSE) # Axis limits ggpar(p, ylim = c(0, 50)) # Axis scale ggpar(p, yscale = "log2") # Format axis scale ggpar(p, yscale = "log2", format.scale = TRUE) # Legends # ++++++++++++++++++ # Change legend position and title ggpar(p2, legend = "right", legend.title = "Dose (mg)", font.legend = c(10, "bold", "red"))
# Load data data("ToothGrowth") df <- ToothGrowth # Basic box plot # +++++++++++++++++++++++++++ p <- ggboxplot(df, x = "dose", y = "len") # Change the plot orientation: horizontal ggpar(p, orientation = "horiz") # Change main title and axis labels # ++++++++++++++++++++++++++++ ggpar(p, main = "Plot of length \n by dose", xlab = "Dose (mg)", ylab = "Length") # Title font styles: 'plain', 'italic', 'bold', 'bold.italic' ggpar(p, main = "Length by dose", font.main = c(14,"bold.italic", "red"), font.x = c(14, "bold", "#2E9FDF"), font.y = c(14, "bold", "#E7B800")) # Hide axis labels ggpar(p, xlab = FALSE, ylab = FALSE) # Change colors # ++++++++++++++++++++++ # Change outline colors by groups: dose p2 <- ggboxplot(df, "dose", "len", color = "dose") p2 # Use custom color palette ggpar(p2, palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Use brewer palette ggpar(p2, palette = "Dark2" ) # Use grey palette ggpar(p2, palette = "grey") # Use scientific journal palette from ggsci package ggpar(p2, palette = "npg") # nature # Axis ticks, limits, scales # +++++++++++++++++++++++++ # Axis ticks labels and rotation ggpar(p, font.tickslab = c(14,"bold", "#993333"), xtickslab.rt = 45, ytickslab.rt = 45) # Hide axis ticks and tick labels ggpar(p, ticks = FALSE, tickslab = FALSE) # Axis limits ggpar(p, ylim = c(0, 50)) # Axis scale ggpar(p, yscale = "log2") # Format axis scale ggpar(p, yscale = "log2", format.scale = TRUE) # Legends # ++++++++++++++++++ # Change legend position and title ggpar(p2, legend = "right", legend.title = "Dose (mg)", font.legend = c(10, "bold", "red"))
Draw a paragraph o text. Splits a long text into multiple lines (by inserting line breaks) so that the output will fit within the current viewport.
ggparagraph( text, color = NULL, size = NULL, face = NULL, family = NULL, lineheight = NULL ) ## S3 method for class 'splitText' drawDetails(x, recording)
ggparagraph( text, color = NULL, size = NULL, face = NULL, family = NULL, lineheight = NULL ) ## S3 method for class 'splitText' drawDetails(x, recording)
text |
the text to plot. |
color |
font color, example: color = "black" |
size |
font size, example: size = 12 |
face |
font face. Allowed values are one of "plain", "italic", "bold", "bold.italic". |
family |
font family |
lineheight |
Line height, example: lineheight = 2. |
x |
a grid grob |
recording |
a logical value indicating whether a grob is being added to the display list or redrawn from the display list. |
Alboukadel Kassambara <[email protected]>
# Density plot density.p <- ggdensity(iris, x = "Sepal.Length", fill = "Species", palette = "jco") # Text plot text <- paste("iris data set gives the measurements in cm", "of the variables sepal length and width", "and petal length and width, respectively,", "for 50 flowers from each of 3 species of iris.", "The species are Iris setosa, versicolor, and virginica.", sep = " ") text.p <- ggparagraph(text, face = "italic", size = 12) # Arrange the plots on the same page ggarrange(density.p, text.p, ncol = 1, nrow = 2, heights = c(1, 0.3))
# Density plot density.p <- ggdensity(iris, x = "Sepal.Length", fill = "Species", palette = "jco") # Text plot text <- paste("iris data set gives the measurements in cm", "of the variables sepal length and width", "and petal length and width, respectively,", "for 50 flowers from each of 3 species of iris.", "The species are Iris setosa, versicolor, and virginica.", sep = " ") text.p <- ggparagraph(text, face = "italic", size = 12) # Arrange the plots on the same page ggarrange(density.p, text.p, ncol = 1, nrow = 2, heights = c(1, 0.3))
Create a pie chart.
ggpie( data, x, label = x, lab.pos = c("out", "in"), lab.adjust = 0, lab.font = c(4, "plain", "black"), font.family = "", color = "black", fill = "white", palette = NULL, size = NULL, ggtheme = theme_pubr(), ... )
ggpie( data, x, label = x, lab.pos = c("out", "in"), lab.adjust = 0, lab.font = c(4, "plain", "black"), font.family = "", color = "black", fill = "white", palette = NULL, size = NULL, ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
variable containing values for drawing. |
label |
variable specifying the label of each slice. |
lab.pos |
character specifying the position for labels. Allowed values are "out" (for outside) or "in" (for inside). |
lab.adjust |
numeric value, used to adjust label position when lab.pos = "in". Increase or decrease this value to see the effect. |
lab.font |
a vector of length 3 indicating respectively the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of label font. For example lab.font= c(4, "bold", "red"). |
font.family |
character vector specifying font family. |
color , fill
|
outline and fill colors. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to be passed to ggpar(). |
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Data: Create some data # +++++++++++++++++++++++++++++++ df <- data.frame( group = c("Male", "Female", "Child"), value = c(25, 25, 50)) head(df) # Basic pie charts # ++++++++++++++++++++++++++++++++ ggpie(df, "value", label = "group") # Reducing margins around the pie chart ggpie(df, "value", label = "group") + theme( plot.margin = unit(c(-.75,-.75,-.75,-.75),"cm")) # Change color # ++++++++++++++++++++++++++++++++ # Change fill color by group # set line color to white # Use custom color palette ggpie(df, "value", label = "group", fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07") ) # Change label # ++++++++++++++++++++++++++++++++ # Show group names and value as labels labs <- paste0(df$group, " (", df$value, "%)") ggpie(df, "value", label = labs, fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Change the position and font color of labels ggpie(df, "value", label = labs, lab.pos = "in", lab.font = "white", fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07"))
# Data: Create some data # +++++++++++++++++++++++++++++++ df <- data.frame( group = c("Male", "Female", "Child"), value = c(25, 25, 50)) head(df) # Basic pie charts # ++++++++++++++++++++++++++++++++ ggpie(df, "value", label = "group") # Reducing margins around the pie chart ggpie(df, "value", label = "group") + theme( plot.margin = unit(c(-.75,-.75,-.75,-.75),"cm")) # Change color # ++++++++++++++++++++++++++++++++ # Change fill color by group # set line color to white # Use custom color palette ggpie(df, "value", label = "group", fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07") ) # Change label # ++++++++++++++++++++++++++++++++ # Show group names and value as labels labs <- paste0(df$group, " (", df$value, "%)") ggpie(df, "value", label = labs, fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07")) # Change the position and font color of labels ggpie(df, "value", label = labs, lab.pos = "in", lab.font = "white", fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07"))
ggpubr General Arguments Description
data |
a data frame |
x |
character string containing the name of x variable. |
y |
character vector containing one or more variables to plot |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color |
outline color. |
fill |
fill color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
linetype |
line types. |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
select |
character vector specifying which items to display. |
remove |
character vector specifying which items to remove from the plot. |
order |
character vector specifying the order of items. |
add |
character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_mad", "median_range"; see ?desc_statby for more details. |
add.params |
parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
error.plot |
plot type used to visualize error. Allowed values are one of c("pointrange", "linerange", "crossbar", "errorbar", "upper_errorbar", "lower_errorbar", "upper_pointrange", "lower_pointrange", "upper_linerange", "lower_linerange"). Default value is "pointrange" or "errorbar". Used only when add != "none" and add contains one "mean_*" or "med_*" where "*" = sd, se, .... |
font.label |
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain"). |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
Displays allowed global options in ggpubr.
ggpubr_options()
ggpubr_options()
ggpubr_options()
ggpubr_options()
Quantile-Quantile plot.
ggqqplot( data, x, combine = FALSE, merge = FALSE, color = "black", palette = NULL, size = NULL, shape = NULL, add = c("qqline", "none"), add.params = list(linetype = "solid"), conf.int = TRUE, conf.int.level = 0.95, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, ggtheme = theme_pubr(), ... )
ggqqplot( data, x, combine = FALSE, merge = FALSE, color = "black", palette = NULL, size = NULL, shape = NULL, add = c("qqline", "none"), add.params = list(linetype = "solid"), conf.int = TRUE, conf.int.level = 0.95, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
variable to be drawn. |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color |
point color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
size |
point size. |
shape |
point shape. |
add |
character vector. Allowed values are one of "none" and "qqline" (for adding qqline). |
add.params |
parameters (color, size, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
conf.int |
logical value. If TRUE, confidence interval is added. |
conf.int.level |
the confidence level. Default value is 0.95. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to |
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Create some data format set.seed(1234) wdata = data.frame( sex = factor(rep(c("F", "M"), each=200)), weight = c(rnorm(200, 55), rnorm(200, 58))) head(wdata, 4) # Basic QQ plot ggqqplot(wdata, x = "weight") # Change colors and shape by groups ("sex") # Use custom palette ggqqplot(wdata, x = "weight", color = "sex", palette = c("#00AFBB", "#E7B800"))
# Create some data format set.seed(1234) wdata = data.frame( sex = factor(rep(c("F", "M"), each=200)), weight = c(rnorm(200, 55), rnorm(200, 58))) head(wdata, 4) # Basic QQ plot ggqqplot(wdata, x = "weight") # Change colors and shape by groups ("sex") # Use custom palette ggqqplot(wdata, x = "weight", color = "sex", palette = c("#00AFBB", "#E7B800"))
Create a scatter plot.
ggscatter( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "lightgray", palette = NULL, shape = 19, size = 2, point = TRUE, rug = FALSE, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, add = c("none", "reg.line", "loess"), add.params = list(), conf.int = FALSE, conf.int.level = 0.95, fullrange = FALSE, ellipse = FALSE, ellipse.level = 0.95, ellipse.type = "norm", ellipse.alpha = 0.1, ellipse.border.remove = FALSE, mean.point = FALSE, mean.point.size = ifelse(is.numeric(size), 2 * size, size), star.plot = FALSE, star.plot.lty = 1, star.plot.lwd = NULL, label = NULL, font.label = c(12, "plain"), font.family = "", label.select = NULL, repel = FALSE, label.rectangle = FALSE, parse = FALSE, cor.coef = FALSE, cor.coeff.args = list(), cor.method = "pearson", cor.coef.coord = c(NULL, NULL), cor.coef.size = 4, ggp = NULL, show.legend.text = NA, ggtheme = theme_pubr(), ... )
ggscatter( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "lightgray", palette = NULL, shape = 19, size = 2, point = TRUE, rug = FALSE, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, add = c("none", "reg.line", "loess"), add.params = list(), conf.int = FALSE, conf.int.level = 0.95, fullrange = FALSE, ellipse = FALSE, ellipse.level = 0.95, ellipse.type = "norm", ellipse.alpha = 0.1, ellipse.border.remove = FALSE, mean.point = FALSE, mean.point.size = ifelse(is.numeric(size), 2 * size, size), star.plot = FALSE, star.plot.lty = 1, star.plot.lwd = NULL, label = NULL, font.label = c(12, "plain"), font.family = "", label.select = NULL, repel = FALSE, label.rectangle = FALSE, parse = FALSE, cor.coef = FALSE, cor.coeff.args = list(), cor.method = "pearson", cor.coef.coord = c(NULL, NULL), cor.coef.size = 4, ggp = NULL, show.legend.text = NA, ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
x variables for drawing. |
y |
y variables for drawing. |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color , fill
|
point colors. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
shape |
point shape. See |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
point |
logical value. If TRUE, show points. |
rug |
logical value. If TRUE, add marginal rug. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
add |
allowed values are one of "none", "reg.line" (for adding linear regression line) or "loess" (for adding local regression fitting). |
add.params |
parameters (color, size, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
conf.int |
logical value. If TRUE, adds confidence interval. |
conf.int.level |
Level controlling confidence region. Default is 95%. Used only when add != "none" and conf.int = TRUE. |
fullrange |
should the fit span the full range of the plot, or just the data. Used only when add != "none". |
ellipse |
logical value. If TRUE, draws ellipses around points. |
ellipse.level |
the size of the concentration ellipse in normal probability. |
ellipse.type |
Character specifying frame type. Possible values are
|
ellipse.alpha |
Alpha for ellipse specifying the transparency level of fill color. Use alpha = 0 for no fill color. |
ellipse.border.remove |
logical value. If TRUE, remove ellipse border lines. |
mean.point |
logical value. If TRUE, group mean points are added to the plot. |
mean.point.size |
numeric value specifying the size of mean points. |
star.plot |
logical value. If TRUE, a star plot is generated. |
star.plot.lty , star.plot.lwd
|
line type and line width (size) for star plot, respectively. |
label |
the name of the column containing point labels. Can be also a character vector with length = nrow(data). |
font.label |
a vector of length 3 indicating respectively the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of point labels. For example font.label = c(14, "bold", "red"). To specify only the size and the style, use font.label = c(14, "plain"). |
font.family |
character vector specifying font family. |
label.select |
character vector specifying some labels to show. |
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
parse |
If |
cor.coef |
logical value. If TRUE, correlation coefficient with the p-value will be added to the plot. |
cor.coeff.args |
a list of arguments to pass to the function
|
cor.method |
method for computing correlation coefficient. Allowed values are one of "pearson", "kendall", or "spearman". |
cor.coef.coord |
numeric vector, of length 2, specifying the x and y coordinates of the correlation coefficient. Default values are NULL. |
cor.coef.size |
correlation coefficient text font size. |
ggp |
a ggplot. If not NULL, points are added to an existing plot. |
show.legend.text |
logical. Should text be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to |
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
stat_cor
, stat_stars
, stat_conf_ellipse
and ggpar
.
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) head(df[, c("wt", "mpg", "cyl")], 3) # Basic plot # +++++++++++++++++++++++++++ ggscatter(df, x = "wt", y = "mpg", color = "black", shape = 21, size = 3, # Points color, shape and size add = "reg.line", # Add regressin line add.params = list(color = "blue", fill = "lightgray"), # Customize reg. line conf.int = TRUE, # Add confidence interval cor.coef = TRUE, # Add correlation coefficient. see ?stat_cor cor.coeff.args = list(method = "pearson", label.x = 3, label.sep = "\n") ) # loess method: local regression fitting ggscatter(df, x = "wt", y = "mpg", add = "loess", conf.int = TRUE) # Control point size by continuous variable values ("qsec") ggscatter(df, x = "wt", y = "mpg", color = "#00AFBB", size = "qsec") # Change colors # +++++++++++++++++++++++++++ # Use custom color palette # Add marginal rug ggscatter(df, x = "wt", y = "mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07") ) # Add group ellipses and mean points # Add stars # +++++++++++++++++++ ggscatter(df, x = "wt", y = "mpg", color = "cyl", shape = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), ellipse = TRUE, mean.point = TRUE, star.plot = TRUE) # Textual annotation # +++++++++++++++++ df$name <- rownames(df) ggscatter(df, x = "wt", y = "mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), label = "name", repel = TRUE)
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) head(df[, c("wt", "mpg", "cyl")], 3) # Basic plot # +++++++++++++++++++++++++++ ggscatter(df, x = "wt", y = "mpg", color = "black", shape = 21, size = 3, # Points color, shape and size add = "reg.line", # Add regressin line add.params = list(color = "blue", fill = "lightgray"), # Customize reg. line conf.int = TRUE, # Add confidence interval cor.coef = TRUE, # Add correlation coefficient. see ?stat_cor cor.coeff.args = list(method = "pearson", label.x = 3, label.sep = "\n") ) # loess method: local regression fitting ggscatter(df, x = "wt", y = "mpg", add = "loess", conf.int = TRUE) # Control point size by continuous variable values ("qsec") ggscatter(df, x = "wt", y = "mpg", color = "#00AFBB", size = "qsec") # Change colors # +++++++++++++++++++++++++++ # Use custom color palette # Add marginal rug ggscatter(df, x = "wt", y = "mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07") ) # Add group ellipses and mean points # Add stars # +++++++++++++++++++ ggscatter(df, x = "wt", y = "mpg", color = "cyl", shape = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), ellipse = TRUE, mean.point = TRUE, star.plot = TRUE) # Textual annotation # +++++++++++++++++ df$name <- rownames(df) ggscatter(df, x = "wt", y = "mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), label = "name", repel = TRUE)
Create a scatter plot with marginal histograms, density plots or box plots.
ggscatterhist( data, x, y, group = NULL, color = "black", fill = NA, palette = NULL, shape = 19, size = 2, linetype = "solid", bins = 30, margin.plot = c("density", "histogram", "boxplot"), margin.params = list(), margin.ggtheme = theme_void(), margin.space = FALSE, main.plot.size = 2, margin.plot.size = 1, title = NULL, xlab = NULL, ylab = NULL, legend = "top", ggtheme = theme_pubr(), print = TRUE, ... ) ## S3 method for class 'ggscatterhist' print( x, margin.space = FALSE, main.plot.size = 2, margin.plot.size = 1, title = NULL, legend = "top", ... )
ggscatterhist( data, x, y, group = NULL, color = "black", fill = NA, palette = NULL, shape = 19, size = 2, linetype = "solid", bins = 30, margin.plot = c("density", "histogram", "boxplot"), margin.params = list(), margin.ggtheme = theme_void(), margin.space = FALSE, main.plot.size = 2, margin.plot.size = 1, title = NULL, xlab = NULL, ylab = NULL, legend = "top", ggtheme = theme_pubr(), print = TRUE, ... ) ## S3 method for class 'ggscatterhist' print( x, margin.space = FALSE, main.plot.size = 2, margin.plot.size = 1, title = NULL, legend = "top", ... )
data |
a data frame |
x |
an object of class |
y |
y variables for drawing. |
group |
a grouping variable. Change points color and shape by groups if
the options |
color , fill
|
point colors. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
shape |
point shape. See |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
linetype |
line type ("solid", "dashed", ...) |
bins |
Number of histogram bins. Defaults to 30. Pick a better value that fit to your data. |
margin.plot |
the type of the marginal plot. Default is "hist". |
margin.params |
parameters to be applied to the marginal plots. |
margin.ggtheme |
the theme of the marginal plot. Default is
|
margin.space |
logical value. If TRUE, adds space between the main plot and the marginal plot. |
main.plot.size |
the width of the main plot. Default is 2. |
margin.plot.size |
the width of the marginal plot. Default is 1. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
legend |
specify the legend position. Allowed values include: "top", "bottom", "left", "right". |
ggtheme |
the theme to be used for the scatter plot. Default is
|
print |
logical value. If |
... |
other arguments passed to the function |
an object of class ggscatterhist
, which is list of ggplots,
including the following elements:
sp: main scatter plot;
xplot: marginal x-axis plot;
yplot: marginal y-axis plot.
.
User can modify each of plot before printing.
# Basic scatter plot with marginal density plot ggscatterhist(iris, x = "Sepal.Length", y = "Sepal.Width", color = "#00AFBB", margin.params = list(fill = "lightgray")) # Grouped data ggscatterhist( iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", size = 3, alpha = 0.6, palette = c("#00AFBB", "#E7B800", "#FC4E07"), margin.params = list(fill = "Species", color = "black", size = 0.2) ) # Use boxplot as marginal ggscatterhist( iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", size = 3, alpha = 0.6, palette = c("#00AFBB", "#E7B800", "#FC4E07"), margin.plot = "boxplot", ggtheme = theme_bw() ) # Add vertical and horizontal line to a ggscatterhist plots <- ggscatterhist(iris, x = "Sepal.Length", y = "Sepal.Width", print = FALSE) plots$sp <- plots$sp + geom_hline(yintercept = 3, linetype = "dashed", color = "blue") + geom_vline(xintercept = 6, linetype = "dashed", color = "red") plots
# Basic scatter plot with marginal density plot ggscatterhist(iris, x = "Sepal.Length", y = "Sepal.Width", color = "#00AFBB", margin.params = list(fill = "lightgray")) # Grouped data ggscatterhist( iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", size = 3, alpha = 0.6, palette = c("#00AFBB", "#E7B800", "#FC4E07"), margin.params = list(fill = "Species", color = "black", size = 0.2) ) # Use boxplot as marginal ggscatterhist( iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", size = 3, alpha = 0.6, palette = c("#00AFBB", "#E7B800", "#FC4E07"), margin.plot = "boxplot", ggtheme = theme_bw() ) # Add vertical and horizontal line to a ggscatterhist plots <- ggscatterhist(iris, x = "Sepal.Length", y = "Sepal.Width", print = FALSE) plots$sp <- plots$sp + geom_hline(yintercept = 3, linetype = "dashed", color = "blue") + geom_vline(xintercept = 6, linetype = "dashed", color = "red") plots
Create a stripchart, also known as one dimensional scatter plots. These plots are suitable compared to box plots when sample sizes are small.
ggstripchart( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "white", palette = NULL, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, shape = 19, size = NULL, select = NULL, remove = NULL, order = NULL, add = "mean_se", add.params = list(), error.plot = "pointrange", label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, jitter = 0.2, position = position_jitter(jitter, seed = 123), ggtheme = theme_pubr(), ... )
ggstripchart( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "white", palette = NULL, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, shape = 19, size = NULL, select = NULL, remove = NULL, order = NULL, add = "mean_se", add.params = list(), error.plot = "pointrange", label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, jitter = 0.2, position = position_jitter(jitter, seed = 123), ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
character string containing the name of x variable. |
y |
character vector containing one or more variables to plot |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color |
outline color. |
fill |
fill color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
shape |
point shape |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
select |
character vector specifying which items to display. |
remove |
character vector specifying which items to remove from the plot. |
order |
character vector specifying the order of items. |
add |
character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see ?desc_statby for more details. |
add.params |
parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
error.plot |
plot type used to visualize error. Allowed values are one of c("pointrange", "linerange", "crossbar", "errorbar", "upper_errorbar", "lower_errorbar", "upper_pointrange", "lower_pointrange", "upper_linerange", "lower_linerange"). Default value is "pointrange" or "errorbar". Used only when add != "none" and add contains one "mean_*" or "med_*" where "*" = sd, se, .... |
label |
the name of the column containing point labels. Can be also a character vector with length = nrow(data). |
font.label |
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain"). |
label.select |
can be of two formats:
|
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
jitter |
the amount of jitter. |
position |
position adjustment, either as a string, or the result of a call to a position adjustment function. Used to adjust position for multiple groups. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to
|
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
ggpar
, ggviolin
, ggdotplot
and ggboxplot
.
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot with summary statistics: mean_se # +++++++++++++++++++++++++++ # Change point shapes by groups: "dose" ggstripchart(df, x = "dose", y = "len", shape = "dose", size = 3, add = "mean_se") # Use mean_sd # Change error.plot to "crossbar" ggstripchart(df, x = "dose", y = "len", shape = "dose", size = 3, add = "mean_sd", add.params = list(width = 0.5), error.plot = "crossbar") # Add summary statistics # ++++++++++++++++++++++++++ # Add box plot ggstripchart(df, x = "dose", y = "len", shape = "dose", add = "boxplot") # Add violin + mean_sd ggstripchart(df, x = "dose", y = "len", shape = "dose", add = c("violin", "mean_sd")) # Change colors # +++++++++++++++++++++++++++ # Change colors by groups: dose # Use custom color palette ggstripchart(df, "dose", "len", shape = "dose", color = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add = "mean_sd") # Plot with multiple groups # +++++++++++++++++++++ # Change shape and color by a second group : "supp" ggstripchart(df, "dose", "len", shape = "supp", color = "supp", palette = c("#00AFBB", "#E7B800")) # Adjust point position ggstripchart(df, "dose", "len", shape = "supp", color = "supp", palette = c("#00AFBB", "#E7B800"), position = position_dodge(0.8) ) # You can also use position_jitterdodge() # but fill aesthetic is required ggstripchart(df, "dose", "len", shape = "supp", color = "supp", palette = c("#00AFBB", "#E7B800"), position = position_jitterdodge() ) # Add boxplot ggstripchart(df, "dose", "len", shape = "supp", color = "supp", palette = c("#00AFBB", "#E7B800"), add = "boxplot", add.params = list(color = "black") )
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot with summary statistics: mean_se # +++++++++++++++++++++++++++ # Change point shapes by groups: "dose" ggstripchart(df, x = "dose", y = "len", shape = "dose", size = 3, add = "mean_se") # Use mean_sd # Change error.plot to "crossbar" ggstripchart(df, x = "dose", y = "len", shape = "dose", size = 3, add = "mean_sd", add.params = list(width = 0.5), error.plot = "crossbar") # Add summary statistics # ++++++++++++++++++++++++++ # Add box plot ggstripchart(df, x = "dose", y = "len", shape = "dose", add = "boxplot") # Add violin + mean_sd ggstripchart(df, x = "dose", y = "len", shape = "dose", add = c("violin", "mean_sd")) # Change colors # +++++++++++++++++++++++++++ # Change colors by groups: dose # Use custom color palette ggstripchart(df, "dose", "len", shape = "dose", color = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add = "mean_sd") # Plot with multiple groups # +++++++++++++++++++++ # Change shape and color by a second group : "supp" ggstripchart(df, "dose", "len", shape = "supp", color = "supp", palette = c("#00AFBB", "#E7B800")) # Adjust point position ggstripchart(df, "dose", "len", shape = "supp", color = "supp", palette = c("#00AFBB", "#E7B800"), position = position_dodge(0.8) ) # You can also use position_jitterdodge() # but fill aesthetic is required ggstripchart(df, "dose", "len", shape = "supp", color = "supp", palette = c("#00AFBB", "#E7B800"), position = position_jitterdodge() ) # Add boxplot ggstripchart(df, "dose", "len", shape = "supp", color = "supp", palette = c("#00AFBB", "#E7B800"), add = "boxplot", add.params = list(color = "black") )
Create a ggplot with summary stats (n, median, mean, iqr) table under the plot. Read more: How to Create a Beautiful Plots in R with Summary Statistics Labels.
ggsummarytable( data, x, y, digits = 0, size = 3, color = "black", palette = NULL, facet.by = NULL, labeller = "label_value", position = "identity", ggtheme = theme_pubr(), ... ) ggsummarystats( data, x, y, summaries = c("n", "median", "iqr"), ggfunc = ggboxplot, color = "black", fill = "white", palette = NULL, facet.by = NULL, free.panels = FALSE, labeller = "label_value", heights = c(0.8, 0.2), digits = 0, table.font.size = 3, ggtheme = theme_pubr(), ... ) ## S3 method for class 'ggsummarystats' print(x, heights = c(0.8, 0.2), ...) ## S3 method for class 'ggsummarystats_list' print(x, heights = c(0.8, 0.2), legend = NULL, ...)
ggsummarytable( data, x, y, digits = 0, size = 3, color = "black", palette = NULL, facet.by = NULL, labeller = "label_value", position = "identity", ggtheme = theme_pubr(), ... ) ggsummarystats( data, x, y, summaries = c("n", "median", "iqr"), ggfunc = ggboxplot, color = "black", fill = "white", palette = NULL, facet.by = NULL, free.panels = FALSE, labeller = "label_value", heights = c(0.8, 0.2), digits = 0, table.font.size = 3, ggtheme = theme_pubr(), ... ) ## S3 method for class 'ggsummarystats' print(x, heights = c(0.8, 0.2), ...) ## S3 method for class 'ggsummarystats_list' print(x, heights = c(0.8, 0.2), legend = NULL, ...)
data |
a data frame |
x |
a list of |
y |
character vector containing one or more variables to plot |
digits |
integer indicating the number of decimal places (round) to be used. |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
color |
outline color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
labeller |
Character vector. An alternative to the argument
|
position |
Position adjustment, either as a string, or the result of a call to a position adjustment function. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments passed to the function |
summaries |
summary stats to display in the table. Possible values are
those returned by the function |
ggfunc |
a ggpubr function, including: ggboxplot, ggviolin, ggdotplot,
ggbarplot, ggline, etc. Can be any other ggplot function that accepts the
following arguments |
fill |
fill color. |
free.panels |
logical. If TRUE, create free plot panels when the
argument |
heights |
a numeric vector of length 2, specifying the heights of the main and the summary table, respectively. |
table.font.size |
the summary table font size. |
legend |
character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). To remove the legend use legend = "none". |
ggsummarytable()
: Create a table of summary stats
ggsummarystats()
: Create a ggplot with a summary stat table under the plot.
# Data preparation #:::::::::::::::::::::::::::::::::::::::::::::::: data("ToothGrowth") df <- ToothGrowth df$dose <- as.factor(df$dose) # Add random QC column set.seed(123) qc <- rep(c("pass", "fail"), 30) df$qc <- as.factor(sample(qc, 60)) # Inspect the data head(df) # Basic summary stats #:::::::::::::::::::::::::::::::::::::::::::::::: # Compute summary statistics summary.stats <- df %>% group_by(dose) %>% get_summary_stats(type = "common") summary.stats # Visualize summary table ggsummarytable( summary.stats, x = "dose", y = c("n", "median", "iqr"), ggtheme = theme_bw() ) # Create plots with summary table under the plot #:::::::::::::::::::::::::::::::::::::::::::::::: # Basic plot ggsummarystats( df, x = "dose", y = "len", ggfunc = ggboxplot, add = "jitter" ) # Color by groups ggsummarystats( df, x = "dose", y = "len", ggfunc = ggboxplot, add = "jitter", color = "dose", palette = "npg" ) # Create a barplot ggsummarystats( df, x = "dose", y = "len", ggfunc = ggbarplot, add = c("jitter", "median_iqr"), color = "dose", palette = "npg" ) # Facet #:::::::::::::::::::::::::::::::::::::::::::::::: # Specify free.panels = TRUE for free panels ggsummarystats( df, x = "dose", y = "len", ggfunc = ggboxplot, add = "jitter", color = "dose", palette = "npg", facet.by = c("supp", "qc"), labeller = "label_both" )
# Data preparation #:::::::::::::::::::::::::::::::::::::::::::::::: data("ToothGrowth") df <- ToothGrowth df$dose <- as.factor(df$dose) # Add random QC column set.seed(123) qc <- rep(c("pass", "fail"), 30) df$qc <- as.factor(sample(qc, 60)) # Inspect the data head(df) # Basic summary stats #:::::::::::::::::::::::::::::::::::::::::::::::: # Compute summary statistics summary.stats <- df %>% group_by(dose) %>% get_summary_stats(type = "common") summary.stats # Visualize summary table ggsummarytable( summary.stats, x = "dose", y = c("n", "median", "iqr"), ggtheme = theme_bw() ) # Create plots with summary table under the plot #:::::::::::::::::::::::::::::::::::::::::::::::: # Basic plot ggsummarystats( df, x = "dose", y = "len", ggfunc = ggboxplot, add = "jitter" ) # Color by groups ggsummarystats( df, x = "dose", y = "len", ggfunc = ggboxplot, add = "jitter", color = "dose", palette = "npg" ) # Create a barplot ggsummarystats( df, x = "dose", y = "len", ggfunc = ggbarplot, add = c("jitter", "median_iqr"), color = "dose", palette = "npg" ) # Facet #:::::::::::::::::::::::::::::::::::::::::::::::: # Specify free.panels = TRUE for free panels ggsummarystats( df, x = "dose", y = "len", ggfunc = ggboxplot, add = "jitter", color = "dose", palette = "npg", facet.by = c("supp", "qc"), labeller = "label_both" )
Add text to a plot.
ggtext( data, x = NULL, y = NULL, label = NULL, color = "black", palette = NULL, size = 11, face = "plain", family = "", show.legend = NA, label.select = NULL, repel = FALSE, label.rectangle = FALSE, parse = FALSE, grouping.vars = NULL, position = "identity", ggp = NULL, ggtheme = theme_pubr(), ... )
ggtext( data, x = NULL, y = NULL, label = NULL, color = "black", palette = NULL, size = 11, face = "plain", family = "", show.legend = NA, label.select = NULL, repel = FALSE, label.rectangle = FALSE, parse = FALSE, grouping.vars = NULL, position = "identity", ggp = NULL, ggtheme = theme_pubr(), ... )
data |
a data frame |
x , y
|
x and y variables for drawing. |
label |
the name of the column containing point labels. Can be also a character vector with length = nrow(data). |
color |
text font color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
size |
text font size. |
face |
text font style. Allowed values are one of c("plain", "bold", "italic", "bold.italic"). |
family |
character vector specifying font family. |
show.legend |
logical. Should text be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. |
label.select |
can be of two formats:
|
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
parse |
If |
grouping.vars |
grouping variables to sort the data by, when the user wants to display the top n up/down labels. |
position |
Position adjustment, either as a string, or the result of a call to a position adjustment function. |
ggp |
a ggplot. If not NULL, points are added to an existing plot. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to |
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) df$name <- rownames(df) head(df[, c("wt", "mpg", "cyl")], 3) # Textual annotation # +++++++++++++++++ ggtext(df, x = "wt", y = "mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), label = "name", repel = TRUE) # Add rectangle around label ggtext(df, x = "wt", y = "mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), label = "name", repel = TRUE, label.rectangle = TRUE)
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) df$name <- rownames(df) head(df[, c("wt", "mpg", "cyl")], 3) # Textual annotation # +++++++++++++++++ ggtext(df, x = "wt", y = "mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), label = "name", repel = TRUE) # Add rectangle around label ggtext(df, x = "wt", y = "mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), label = "name", repel = TRUE, label.rectangle = TRUE)
Draw a textual table.
ggtexttable()
: draw
a textual table.
ttheme()
: customize table theme.
rownames_style(), colnames_style(), tbody_style()
: helper functions
to customize the table row names, column names and body.
table_cell_font()
: access to a table cell for changing the text font (size and face).
table_cell_bg()
: access to a table cell for changing the background (fill, color, linewidth).
tab_cell_crossout()
: cross out a table cell.
tab_ncol(), tab_nrow()
: returns, respectively, the number of columns and rows in a ggtexttable.
tab_add_hline()
: Creates horizontal lines or separators at the top or the bottom side of a given specified row.
tab_add_vline()
: Creates vertical lines or separators at the right or the left side of a given specified column.
tab_add_border(), tbody_add_border(), thead_add_border()
: Add borders to table; tbody is for table body and thead is for table head.
tab_add_title(),tab_add_footnote()
: Add title, subtitle and footnote to a table.
ggtexttable( x, rows = rownames(x), cols = colnames(x), vp = NULL, theme = ttheme(), ... ) ttheme( base_style = "default", base_size = 11, base_colour = "black", padding = unit(c(4, 4), "mm"), colnames.style = colnames_style(size = base_size), rownames.style = rownames_style(size = base_size), tbody.style = tbody_style(size = base_size) ) colnames_style( color = "black", face = "bold", size = 12, fill = "grey80", linewidth = 1, linecolor = "white", parse = FALSE, ... ) rownames_style( color = "black", face = "italic", size = 12, fill = NA, linewidth = 1, linecolor = "white", parse = FALSE, ... ) tbody_style( color = "black", face = "plain", size = 12, fill = c("grey95", "grey90"), linewidth = 1, linecolor = "white", parse = FALSE, ... ) table_cell_font(tab, row, column, face = NULL, size = NULL, color = NULL) table_cell_bg( tab, row, column, fill = NULL, color = NULL, linewidth = NULL, alpha = NULL ) tab_cell_crossout( tab, row, column, linetype = 1, linewidth = 1, linecolor = "black", reduce.size.by = 0 ) tab_ncol(tab) tab_nrow(tab) tab_add_hline( tab, at.row = 2:tab_nrow(tab), row.side = c("bottom", "top"), from.column = 1, to.column = tab_ncol(tab), linetype = 1, linewidth = 1, linecolor = "black" ) tab_add_vline( tab, at.column = 2:tab_ncol(tab), column.side = c("left", "right"), from.row = 1, to.row = tab_nrow(tab), linetype = 1, linewidth = 1, linecolor = "black" ) tab_add_border( tab, from.row = 2, to.row = tab_nrow(tab), from.column = 1, to.column = tab_ncol(tab), linetype = 1, linewidth = 1, linecolor = "black" ) tbody_add_border( tab, from.row = 2, to.row = tab_nrow(tab), from.column = 1, to.column = tab_ncol(tab), linetype = 1, linewidth = 1, linecolor = "black" ) thead_add_border( tab, from.row = 1, to.row = 1, from.column = 1, to.column = tab_ncol(tab), linetype = 1, linewidth = 1, linecolor = "black" ) tab_add_title( tab, text, face = NULL, size = NULL, color = NULL, family = NULL, padding = unit(1.5, "line"), just = "left", hjust = NULL, vjust = NULL ) tab_add_footnote( tab, text, face = NULL, size = NULL, color = NULL, family = NULL, padding = unit(1.5, "line"), just = "right", hjust = NULL, vjust = NULL )
ggtexttable( x, rows = rownames(x), cols = colnames(x), vp = NULL, theme = ttheme(), ... ) ttheme( base_style = "default", base_size = 11, base_colour = "black", padding = unit(c(4, 4), "mm"), colnames.style = colnames_style(size = base_size), rownames.style = rownames_style(size = base_size), tbody.style = tbody_style(size = base_size) ) colnames_style( color = "black", face = "bold", size = 12, fill = "grey80", linewidth = 1, linecolor = "white", parse = FALSE, ... ) rownames_style( color = "black", face = "italic", size = 12, fill = NA, linewidth = 1, linecolor = "white", parse = FALSE, ... ) tbody_style( color = "black", face = "plain", size = 12, fill = c("grey95", "grey90"), linewidth = 1, linecolor = "white", parse = FALSE, ... ) table_cell_font(tab, row, column, face = NULL, size = NULL, color = NULL) table_cell_bg( tab, row, column, fill = NULL, color = NULL, linewidth = NULL, alpha = NULL ) tab_cell_crossout( tab, row, column, linetype = 1, linewidth = 1, linecolor = "black", reduce.size.by = 0 ) tab_ncol(tab) tab_nrow(tab) tab_add_hline( tab, at.row = 2:tab_nrow(tab), row.side = c("bottom", "top"), from.column = 1, to.column = tab_ncol(tab), linetype = 1, linewidth = 1, linecolor = "black" ) tab_add_vline( tab, at.column = 2:tab_ncol(tab), column.side = c("left", "right"), from.row = 1, to.row = tab_nrow(tab), linetype = 1, linewidth = 1, linecolor = "black" ) tab_add_border( tab, from.row = 2, to.row = tab_nrow(tab), from.column = 1, to.column = tab_ncol(tab), linetype = 1, linewidth = 1, linecolor = "black" ) tbody_add_border( tab, from.row = 2, to.row = tab_nrow(tab), from.column = 1, to.column = tab_ncol(tab), linetype = 1, linewidth = 1, linecolor = "black" ) thead_add_border( tab, from.row = 1, to.row = 1, from.column = 1, to.column = tab_ncol(tab), linetype = 1, linewidth = 1, linecolor = "black" ) tab_add_title( tab, text, face = NULL, size = NULL, color = NULL, family = NULL, padding = unit(1.5, "line"), just = "left", hjust = NULL, vjust = NULL ) tab_add_footnote( tab, text, face = NULL, size = NULL, color = NULL, family = NULL, padding = unit(1.5, "line"), just = "right", hjust = NULL, vjust = NULL )
x |
a |
rows |
optional vector to specify row names |
cols |
optional vector to specify column names |
vp |
optional viewport |
theme |
a list, as returned by the function |
... |
extra parameters for text justification, e.g.: hjust and x. Default
is "centre" for the body and header, and "right" for the row names. Left
justification: |
base_style |
character string the table style/theme. The available themes
are illustrated in the
ggtexttable-theme.pdf
file. Allowed values include one of |
base_size |
default font size |
base_colour |
default font colour |
padding |
length-2 unit vector specifying the horizontal and vertical padding of text within each cell |
colnames.style |
a list, as returned by the function
|
rownames.style |
a list, as returned by the function
|
tbody.style |
a list, as returned by the function |
color , face , size
|
text font color, face and size, respectively. Allowed values for face include c("plain", "bold", "italic", "bold.italic"). |
fill |
background color. |
linewidth , linecolor
|
line width and color, respectively. |
parse |
logical, default behaviour for parsing text as plotmath |
tab |
an object from |
row , column
|
an integer specifying the row and the column numbers for the cell of interest. |
alpha |
numeric value specifying fill color transparency. Value should be in [0, 1], where 0 is full transparency and 1 is no transparency. |
linetype |
line type |
reduce.size.by |
Numeric value in [0, 1] to reduce the size by. |
at.row |
a numeric vector of row indexes; for example |
row.side |
row side to which the horinzotal line should be added. Can be one of |
from.column |
integer indicating the column from which to start drawing the horizontal line. |
to.column |
integer indicating the column to which the horizontal line should end. |
at.column |
a numeric vector of column indexes; for example |
column.side |
column side to which the vertical line should be added. Can be one of |
from.row |
integer indicating the row from which to start drawing the horizontal line. |
to.row |
integer indicating the row to which the vertical line should end. |
text |
text to be added as title or footnote. |
family |
font family |
just |
The justification of the text relative to its (x, y) location. If there are two values, the first value specifies horizontal justification and the second value specifies vertical justification. Possible string values are: "left", "right", "centre", "center", "bottom", and "top". For numeric values, 0 means left (bottom) alignment and 1 means right (top) alignment. |
hjust |
A numeric vector specifying horizontal justification. If specified, overrides the just setting. |
vjust |
A numeric vector specifying vertical justification. If specified, overrides the just setting. |
an object of class ggplot.
# data df <- head(iris) # Default table # Remove row names using rows = NULL ggtexttable(df, rows = NULL) # Text justification for individual cells/rows/columns (#335) # First column is left justified i.e., hjust = 0 , x = 0.1 # Remaining columns are right justified i.e., hjust = 1 , x = 0.9 table_theme <- ttheme( tbody.style = tbody_style( hjust = as.vector(matrix(c(0, 1, 1, 1, 1), ncol = 5, nrow = nrow(df), byrow = TRUE)), x = as.vector(matrix(c(.1, .9, .9,.9, .9), ncol = 5, nrow = nrow(df), byrow = TRUE)) ) ) ggtexttable(df, rows = NULL, theme = table_theme) # Blank theme ggtexttable(df, rows = NULL, theme = ttheme("blank")) # light theme ggtexttable(df, rows = NULL, theme = ttheme("light")) # Column names border only ggtexttable(df, rows = NULL, theme = ttheme("blank")) %>% tab_add_hline(at.row = 1:2, row.side = "top", linewidth = 2) # classic theme ggtexttable(df, rows = NULL, theme = ttheme("classic")) # minimal theme ggtexttable(df, rows = NULL, theme = ttheme("minimal")) # Medium blue (mBlue) theme ggtexttable(df, rows = NULL, theme = ttheme("mBlue")) # Customize the table as you want ggtexttable(df, rows = NULL, theme = ttheme( colnames.style = colnames_style(color = "white", fill = "#8cc257"), tbody.style = tbody_style(color = "black", fill = c("#e8f3de", "#d3e8bb")) ) ) # Use RColorBrewer palette # Provide as many fill color as there are rows in the table body, here nrow = 6 ggtexttable(df, theme = ttheme( colnames.style = colnames_style(fill = "white"), tbody.style = tbody_style(fill = get_palette("RdBu", 6)) ) ) # Text justification #:::::::::::::::::::::::::::::::::::::::::::::: # Default is "centre" for the body and header, and "right" for the row names. # Left justification: hjust=0, x=0.1 # Right justification: hjust=1, x=0.9 tbody.style = tbody_style(color = "black", fill = c("#e8f3de", "#d3e8bb"), hjust=1, x=0.9) ggtexttable(head(iris), rows = NULL, theme = ttheme( colnames.style = colnames_style(color = "white", fill = "#8cc257"), tbody.style = tbody.style ) ) # Access and modify the font and # the background of table cells # ::::::::::::::::::::::::::::::::::::::::::::: tab <- ggtexttable(head(iris), rows = NULL, theme = ttheme("classic")) tab <- table_cell_font(tab, row = 3, column = 2, face = "bold") tab <- table_cell_bg(tab, row = 4, column = 3, linewidth = 5, fill="darkolivegreen1", color = "darkolivegreen4") tab # Change table cells background and font for column 3, # Spaning from row 2 to the last row in the data tab <- ggtexttable(df, rows = NULL, theme = ttheme("classic")) tab %>% table_cell_bg(row = 2:tab_nrow(tab), column = 3, fill = "darkblue") %>% table_cell_font(row = 2:tab_nrow(tab), column = 3, face = "italic", color = "white") # Add separators and borders # ::::::::::::::::::::::::::::::::::::::::::::::::::: # Table with blank theme tab <- ggtexttable(df, theme = ttheme("blank"), rows = NULL) # Add horizontal and vertical lines tab %>% tab_add_hline(at.row = c(1, 2), row.side = "top", linewidth = 3, linetype = 1) %>% tab_add_hline(at.row = c(7), row.side = "bottom", linewidth = 3, linetype = 1) %>% tab_add_vline(at.column = 2:tab_ncol(tab), column.side = "left", from.row = 2, linetype = 2) # Add borders to table body and header # Cross out some cells tab %>% tbody_add_border() %>% thead_add_border() %>% tab_cell_crossout( row = c(2, 4), column = 3, linecolor = "red", reduce.size.by = 0.6 ) # Add titles andd footnote # ::::::::::::::::::::::::::::::::::::::::::::::::::: # Add titles and footnote # Wrap subtitle into multiple lines using strwrap() main.title <- "Edgar Anderson's Iris Data" subtitle <- paste0( "This famous (Fisher's or Anderson's) iris data set gives the measurements", " in centimeters of the variables sepal length and width and petal length and width,", " respectively, for 50 flowers from each of 3 species of iris.", " The species are Iris setosa, versicolor, and virginica." ) %>% strwrap(width = 80) %>% paste(collapse = "\n") tab <- ggtexttable(head(iris), theme = ttheme("light")) tab %>% tab_add_title(text = subtitle, face = "plain", size = 10) %>% tab_add_title(text = main.title, face = "bold", padding = unit(0.1, "line")) %>% tab_add_footnote(text = "*Table created using ggpubr", size = 10, face = "italic") # Combine density plot and summary table #::::::::::::::::::::::::::::::::::::: # Density plot of "Sepal.Length" density.p <- ggdensity(iris, x = "Sepal.Length", fill = "Species", palette = "jco") # Draw the summary table of Sepal.Length # Descriptive statistics by groups stable <- desc_statby(iris, measure.var = "Sepal.Length", grps = "Species") stable <- stable[, c("Species", "length", "mean", "sd")] stable.p <- ggtexttable(stable, rows = NULL, theme = ttheme("mOrange")) # Arrange the plots on the same page ggarrange(density.p, stable.p, ncol = 1, nrow = 2, heights = c(1, 0.5))
# data df <- head(iris) # Default table # Remove row names using rows = NULL ggtexttable(df, rows = NULL) # Text justification for individual cells/rows/columns (#335) # First column is left justified i.e., hjust = 0 , x = 0.1 # Remaining columns are right justified i.e., hjust = 1 , x = 0.9 table_theme <- ttheme( tbody.style = tbody_style( hjust = as.vector(matrix(c(0, 1, 1, 1, 1), ncol = 5, nrow = nrow(df), byrow = TRUE)), x = as.vector(matrix(c(.1, .9, .9,.9, .9), ncol = 5, nrow = nrow(df), byrow = TRUE)) ) ) ggtexttable(df, rows = NULL, theme = table_theme) # Blank theme ggtexttable(df, rows = NULL, theme = ttheme("blank")) # light theme ggtexttable(df, rows = NULL, theme = ttheme("light")) # Column names border only ggtexttable(df, rows = NULL, theme = ttheme("blank")) %>% tab_add_hline(at.row = 1:2, row.side = "top", linewidth = 2) # classic theme ggtexttable(df, rows = NULL, theme = ttheme("classic")) # minimal theme ggtexttable(df, rows = NULL, theme = ttheme("minimal")) # Medium blue (mBlue) theme ggtexttable(df, rows = NULL, theme = ttheme("mBlue")) # Customize the table as you want ggtexttable(df, rows = NULL, theme = ttheme( colnames.style = colnames_style(color = "white", fill = "#8cc257"), tbody.style = tbody_style(color = "black", fill = c("#e8f3de", "#d3e8bb")) ) ) # Use RColorBrewer palette # Provide as many fill color as there are rows in the table body, here nrow = 6 ggtexttable(df, theme = ttheme( colnames.style = colnames_style(fill = "white"), tbody.style = tbody_style(fill = get_palette("RdBu", 6)) ) ) # Text justification #:::::::::::::::::::::::::::::::::::::::::::::: # Default is "centre" for the body and header, and "right" for the row names. # Left justification: hjust=0, x=0.1 # Right justification: hjust=1, x=0.9 tbody.style = tbody_style(color = "black", fill = c("#e8f3de", "#d3e8bb"), hjust=1, x=0.9) ggtexttable(head(iris), rows = NULL, theme = ttheme( colnames.style = colnames_style(color = "white", fill = "#8cc257"), tbody.style = tbody.style ) ) # Access and modify the font and # the background of table cells # ::::::::::::::::::::::::::::::::::::::::::::: tab <- ggtexttable(head(iris), rows = NULL, theme = ttheme("classic")) tab <- table_cell_font(tab, row = 3, column = 2, face = "bold") tab <- table_cell_bg(tab, row = 4, column = 3, linewidth = 5, fill="darkolivegreen1", color = "darkolivegreen4") tab # Change table cells background and font for column 3, # Spaning from row 2 to the last row in the data tab <- ggtexttable(df, rows = NULL, theme = ttheme("classic")) tab %>% table_cell_bg(row = 2:tab_nrow(tab), column = 3, fill = "darkblue") %>% table_cell_font(row = 2:tab_nrow(tab), column = 3, face = "italic", color = "white") # Add separators and borders # ::::::::::::::::::::::::::::::::::::::::::::::::::: # Table with blank theme tab <- ggtexttable(df, theme = ttheme("blank"), rows = NULL) # Add horizontal and vertical lines tab %>% tab_add_hline(at.row = c(1, 2), row.side = "top", linewidth = 3, linetype = 1) %>% tab_add_hline(at.row = c(7), row.side = "bottom", linewidth = 3, linetype = 1) %>% tab_add_vline(at.column = 2:tab_ncol(tab), column.side = "left", from.row = 2, linetype = 2) # Add borders to table body and header # Cross out some cells tab %>% tbody_add_border() %>% thead_add_border() %>% tab_cell_crossout( row = c(2, 4), column = 3, linecolor = "red", reduce.size.by = 0.6 ) # Add titles andd footnote # ::::::::::::::::::::::::::::::::::::::::::::::::::: # Add titles and footnote # Wrap subtitle into multiple lines using strwrap() main.title <- "Edgar Anderson's Iris Data" subtitle <- paste0( "This famous (Fisher's or Anderson's) iris data set gives the measurements", " in centimeters of the variables sepal length and width and petal length and width,", " respectively, for 50 flowers from each of 3 species of iris.", " The species are Iris setosa, versicolor, and virginica." ) %>% strwrap(width = 80) %>% paste(collapse = "\n") tab <- ggtexttable(head(iris), theme = ttheme("light")) tab %>% tab_add_title(text = subtitle, face = "plain", size = 10) %>% tab_add_title(text = main.title, face = "bold", padding = unit(0.1, "line")) %>% tab_add_footnote(text = "*Table created using ggpubr", size = 10, face = "italic") # Combine density plot and summary table #::::::::::::::::::::::::::::::::::::: # Density plot of "Sepal.Length" density.p <- ggdensity(iris, x = "Sepal.Length", fill = "Species", palette = "jco") # Draw the summary table of Sepal.Length # Descriptive statistics by groups stable <- desc_statby(iris, measure.var = "Sepal.Length", grps = "Species") stable <- stable[, c("Species", "length", "mean", "sd")] stable.p <- ggtexttable(stable, rows = NULL, theme = ttheme("mOrange")) # Arrange the plots on the same page ggarrange(density.p, stable.p, ncol = 1, nrow = 2, heights = c(1, 0.5))
Create a violin plot with error bars. Violin plots are similar to box plots, except that they also show the kernel probability density of the data at different values.
ggviolin( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "white", palette = NULL, alpha = 1, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, linetype = "solid", trim = FALSE, size = NULL, width = 1, draw_quantiles = NULL, select = NULL, remove = NULL, order = NULL, add = "mean_se", add.params = list(), error.plot = "pointrange", label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, position = position_dodge(0.8), ggtheme = theme_pubr(), ... )
ggviolin( data, x, y, combine = FALSE, merge = FALSE, color = "black", fill = "white", palette = NULL, alpha = 1, title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE, linetype = "solid", trim = FALSE, size = NULL, width = 1, draw_quantiles = NULL, select = NULL, remove = NULL, order = NULL, add = "mean_se", add.params = list(), error.plot = "pointrange", label = NULL, font.label = list(size = 11, color = "black"), label.select = NULL, repel = FALSE, label.rectangle = FALSE, position = position_dodge(0.8), ggtheme = theme_pubr(), ... )
data |
a data frame |
x |
character string containing the name of x variable. |
y |
character vector containing one or more variables to plot |
combine |
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables. |
merge |
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable. |
color |
outline color. |
fill |
fill color. |
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
alpha |
color transparency. Values should be between 0 and 1. |
title |
plot main title. |
xlab |
character vector specifying x axis labels. Use xlab = FALSE to hide xlab. |
ylab |
character vector specifying y axis labels. Use ylab = FALSE to hide ylab. |
facet.by |
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data. |
panel.labs |
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ). |
short.panel.labs |
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels. |
linetype |
line types. |
trim |
If |
size |
Numeric value (e.g.: size = 1). change the size of points and outlines. |
width |
violin width. |
draw_quantiles |
If |
select |
character vector specifying which items to display. |
remove |
character vector specifying which items to remove from the plot. |
order |
character vector specifying the order of items. |
add |
character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see ?desc_statby for more details. |
add.params |
parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red"). |
error.plot |
plot type used to visualize error. Allowed values are one of c("pointrange", "linerange", "crossbar", "errorbar", "upper_errorbar", "lower_errorbar", "upper_pointrange", "lower_pointrange", "upper_linerange", "lower_linerange"). Default value is "pointrange" or "errorbar". Used only when add != "none" and add contains one "mean_*" or "med_*" where "*" = sd, se, .... |
label |
the name of the column containing point labels. Can be also a character vector with length = nrow(data). |
font.label |
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain"). |
label.select |
can be of two formats:
|
repel |
a logical value, whether to use ggrepel to avoid overplotting text labels or not. |
label.rectangle |
logical value. If TRUE, add rectangle underneath the text, making it easier to read. |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
ggtheme |
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), .... |
... |
other arguments to be passed to
|
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot # +++++++++++++++++++++++++++ ggviolin(df, x = "dose", y = "len") # Change the plot orientation: horizontal ggviolin(df, "dose", "len", orientation = "horiz") # Add summary statistics # ++++++++++++++++++++++++++ # Draw quantiles ggviolin(df, "dose", "len", add = "none", draw_quantiles = 0.5) # Add box plot ggviolin(df, x = "dose", y = "len", add = "boxplot") ggviolin(df, x = "dose", y = "len", add = "dotplot") # Add jitter points and # change point shape by groups ("dose") ggviolin(df, x = "dose", y = "len", add = "jitter", shape = "dose") # Add mean_sd + jittered points ggviolin(df, x = "dose", y = "len", add = c("jitter", "mean_sd")) # Change error.plot to "crossbar" ggviolin(df, x = "dose", y = "len", add = "mean_sd", error.plot = "crossbar") # Change colors # +++++++++++++++++++++++++++ # Change outline and fill colors ggviolin(df, "dose", "len", color = "black", fill = "gray") # Change outline colors by groups: dose # Use custom color palette and add boxplot ggviolin(df, "dose", "len", color = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add = "boxplot") # Change fill color by groups: dose # add boxplot with white fill color ggviolin(df, "dose", "len", fill = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add = "boxplot", add.params = list(fill = "white")) # Plot with multiple groups # +++++++++++++++++++++ # fill or color box plot by a second group : "supp" ggviolin(df, "dose", "len", color = "supp", palette = c("#00AFBB", "#E7B800"), add = "boxplot")
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot # +++++++++++++++++++++++++++ ggviolin(df, x = "dose", y = "len") # Change the plot orientation: horizontal ggviolin(df, "dose", "len", orientation = "horiz") # Add summary statistics # ++++++++++++++++++++++++++ # Draw quantiles ggviolin(df, "dose", "len", add = "none", draw_quantiles = 0.5) # Add box plot ggviolin(df, x = "dose", y = "len", add = "boxplot") ggviolin(df, x = "dose", y = "len", add = "dotplot") # Add jitter points and # change point shape by groups ("dose") ggviolin(df, x = "dose", y = "len", add = "jitter", shape = "dose") # Add mean_sd + jittered points ggviolin(df, x = "dose", y = "len", add = c("jitter", "mean_sd")) # Change error.plot to "crossbar" ggviolin(df, x = "dose", y = "len", add = "mean_sd", error.plot = "crossbar") # Change colors # +++++++++++++++++++++++++++ # Change outline and fill colors ggviolin(df, "dose", "len", color = "black", fill = "gray") # Change outline colors by groups: dose # Use custom color palette and add boxplot ggviolin(df, "dose", "len", color = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add = "boxplot") # Change fill color by groups: dose # add boxplot with white fill color ggviolin(df, "dose", "len", fill = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add = "boxplot", add.params = list(fill = "white")) # Plot with multiple groups # +++++++++++++++++++++ # fill or color box plot by a second group : "supp" ggviolin(df, "dose", "len", color = "supp", palette = c("#00AFBB", "#E7B800"), add = "boxplot")
Change gradient color.
gradient_color()
: Change gradient color.
gradient_fill()
: Change gradient fill.
gradient_color(palette) gradient_fill(palette)
gradient_color(palette) gradient_fill(palette)
palette |
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". Can be also a numeric vector; in this case a basic color palette is created using the function palette. |
df <- mtcars p <- ggscatter(df, x = "wt", y = "mpg", color = "mpg") # Change gradient color # Use one custom color p + gradient_color("red") # Two colors p + gradient_color(c("blue", "red")) # Three colors p + gradient_color(c("blue", "white", "red")) # Use RColorBrewer palette p + gradient_color("RdYlBu") # Use ggsci color palette p + gradient_color("npg")
df <- mtcars p <- ggscatter(df, x = "wt", y = "mpg", color = "mpg") # Change gradient color # Use one custom color p + gradient_color("red") # Two colors p + gradient_color(c("blue", "red")) # Three colors p + gradient_color(c("blue", "white", "red")) # Use RColorBrewer palette p + gradient_color("RdYlBu") # Use ggsci color palette p + gradient_color("npg")
Add grids to ggplot.
grids(axis = c("xy", "x", "y"), color = "grey92", size = NULL, linetype = NULL)
grids(axis = c("xy", "x", "y"), color = "grey92", size = NULL, linetype = NULL)
axis |
axis for which grid should be added. Allowed values include |
color |
grid line color. |
size |
numeric value specifying grid line size. |
linetype |
line type. An integer (0:8), a name (blank, solid, dashed,
dotted, dotdash, longdash, twodash). Sess |
# Load data data("ToothGrowth") # Basic plot p <- ggboxplot(ToothGrowth, x = "dose", y = "len") p # Add border p + grids(linetype = "dashed")
# Load data data("ToothGrowth") # Basic plot p <- ggboxplot(ToothGrowth, x = "dose", y = "len") p # Add border p + grids(linetype = "dashed")
Convert NPC (Normalized Parent Coordinates) into data coordinates.
npc_to_data_coord(npc, data.ranges)
npc_to_data_coord(npc, data.ranges)
npc |
a numeric vector. Each value should be in [0-1] |
data.ranges |
a numeric vector of length 2 containing the data ranges (minimum and the maximum) |
a numeric vector representing data coordinates.
npc_to_data_coord(npc = c(0.2, 0.95), data.ranges = c(1, 20)) as_npc(c("top", "right")) %>% npc_to_data_coord(data.ranges = c(1, 20))
npc_to_data_coord(npc = c(0.2, 0.95), data.ranges = c(1, 20)) as_npc(c("top", "right")) %>% npc_to_data_coord(data.ranges = c(1, 20))
Rotate a ggplot to create horizontal plots. Wrapper around
coord_flip
.
rotate(...)
rotate(...)
... |
other arguments to pass to |
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot p <- ggboxplot(df, x = "dose", y = "len", color = "dose", palette = "jco") p # Create horizontal plots p + rotate()
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot p <- ggboxplot(df, x = "dose", y = "len", color = "dose", palette = "jco") p # Create horizontal plots p + rotate()
Rotate the x-axis text (tick mark labels).
rotate_x_text
(): Rotate x axis text.
rotate_y_text
(): Rotate y axis text.
rotate_x_text(angle = 90, hjust = NULL, vjust = NULL, ...) rotate_y_text(angle = 90, hjust = NULL, vjust = NULL, ...)
rotate_x_text(angle = 90, hjust = NULL, vjust = NULL, ...) rotate_y_text(angle = 90, hjust = NULL, vjust = NULL, ...)
angle |
numeric value specifying the rotation angle. Default is 90 for vertical x-axis text. |
hjust |
horizontal justification (in [0, 1]). |
vjust |
vertical justification (in [0, 1]). |
... |
other arguments to pass to the function
|
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot p <- ggboxplot(df, x = "dose", y = "len") p # Vertical x axis text p + rotate_x_text() # Set rotation angle to 45 p + rotate_x_text(45) p + rotate_y_text(45)
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot p <- ggboxplot(df, x = "dose", y = "len") p # Vertical x axis text p + rotate_x_text() # Set rotation angle to 45 p + rotate_x_text(45) p + rotate_y_text(45)
Remove a specific component from a ggplot.
rremove(object)
rremove(object)
object |
character string specifying the plot components. Allowed values include:
|
# Load data data("ToothGrowth") # Basic plot p <- ggboxplot(ToothGrowth, x = "dose", y = "len", ggtheme = theme_gray()) p # Remove all grids p + rremove("grid") # Remove only x grids p + rremove("x.grid")
# Load data data("ToothGrowth") # Basic plot p <- ggboxplot(ToothGrowth, x = "dose", y = "len", ggtheme = theme_gray()) p # Remove all grids p + rremove("grid") # Remove only x grids p + rremove("x.grid")
change_palette(), set_palette()
: Change
both color and fill palettes.
color_palette()
: change color
palette only.
fill_palette()
: change fill palette only.
set_palette(p, palette) change_palette(p, palette) color_palette(palette = NULL, ...) fill_palette(palette = NULL, ...)
set_palette(p, palette) change_palette(p, palette) color_palette(palette = NULL, ...) fill_palette(palette = NULL, ...)
p |
a ggplot |
palette |
Color palette. Allowed values include:
|
... |
other arguments passed to ggplot2 scale_color_xxx() and scale_fill_xxx() functions. |
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot p <- ggboxplot(df, x = "dose", y = "len", color = "dose") p # Change the color palette set_palette(p, "jco")
# Load data data("ToothGrowth") df <- ToothGrowth # Basic plot p <- ggboxplot(df, x = "dose", y = "len", color = "dose") p # Change the color palette set_palette(p, "jco")
Show line types available in R.
show_line_types()
show_line_types()
a ggplot.
show_line_types()+ theme_minimal()
show_line_types()+ theme_minimal()
Show point shapes available in R.
show_point_shapes()
show_point_shapes()
a ggplot.
show_point_shapes()+ theme_minimal()
show_point_shapes()+ theme_minimal()
Adds automatically one-way and two-way ANOVA test p-values to a ggplot, such as box blots, dot plots and stripcharts.
stat_anova_test( mapping = NULL, data = NULL, method = c("one_way", "one_way_repeated", "two_way", "two_way_repeated", "two_way_mixed"), wid = NULL, group.by = NULL, type = NULL, effect.size = "ges", error = NULL, correction = c("auto", "GG", "HF", "none"), label = "{method}, p = {p.format}", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, step.increase = 0.1, p.adjust.method = "holm", significance = list(), geom = "text", position = "identity", na.rm = FALSE, show.legend = FALSE, inherit.aes = TRUE, parse = FALSE, ... )
stat_anova_test( mapping = NULL, data = NULL, method = c("one_way", "one_way_repeated", "two_way", "two_way_repeated", "two_way_mixed"), wid = NULL, group.by = NULL, type = NULL, effect.size = "ges", error = NULL, correction = c("auto", "GG", "HF", "none"), label = "{method}, p = {p.format}", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, step.increase = 0.1, p.adjust.method = "holm", significance = list(), geom = "text", position = "identity", na.rm = FALSE, show.legend = FALSE, inherit.aes = TRUE, parse = FALSE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
method |
ANOVA test methods. Possible values are one of
|
wid |
(factor) column name containing individuals/subjects identifier.
Should be unique per individual. Required only for repeated measure tests
( |
group.by |
(optional) character vector specifying the grouping variable; it should be used only for grouped plots. Possible values are :
|
type |
the type of sums of squares for ANOVA. Allowed values are either
1, 2 or 3. |
effect.size |
the effect size to compute and to show in the ANOVA results. Allowed values can be either "ges" (generalized eta squared) or "pes" (partial eta squared) or both. Default is "ges". |
error |
(optional) for a linear model, an lm model object from which the
overall error sum of squares and degrees of freedom are to be calculated.
Read more in |
correction |
character. Used only in repeated measures ANOVA test to specify which correction of the degrees of freedom should be reported for the within-subject factors. Possible values are:
|
label |
character string specifying label. Can be:
. |
label.x.npc , label.y.npc
|
can be
|
label.x , label.y
|
|
step.increase |
numeric value in with the increase in fraction of total height for every additional comparison to minimize overlap. The step value can be negative to reverse the order of groups. |
p.adjust.method |
method for adjusting p values (see
|
significance |
a list of arguments specifying the signifcance cutpoints
and symbols. For example, In other words, we use the following convention for symbols indicating statistical significance:
|
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
parse |
If TRUE, the labels will be parsed into expressions and displayed
as described in |
... |
other arguments to pass to
|
DFn: Degrees of Freedom in the numerator (i.e. DF effect).
DFd: Degrees of Freedom in the denominator (i.e., DF error).
ges: Generalized Eta-Squared measure of
effect size. Computed only when the option effect.size = "ges"
.
pes: Partial Eta-Squared measure of effect size. Computed only when
the option effect.size = "pes"
.
F: F-value.
p: p-value.
p.adj: Adjusted p-values.
p.signif: P-value significance.
p.adj.signif: Adjusted p-value significance.
p.format: Formated p-value.
p.adj.format: Formated adjusted p-value.
n: number of samples.
# Data preparation #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Transform `dose` into factor variable df <- ToothGrowth df$dose <- as.factor(df$dose) # Add individuals id df$id <- rep(1:10, 6) # Add a random grouping variable set.seed(123) df$group <- sample(factor(rep(c("grp1", "grp2", "grp3"), 20))) df$len <- ifelse(df$group == "grp2", df$len+2, df$len) df$len <- ifelse(df$group == "grp3", df$len+7, df$len) head(df, 3) # Basic boxplot #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a basic boxplot # Add 5% and 10% space to the plot bottom and the top, respectively bxp <- ggboxplot(df, x = "dose", y = "len") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add the p-value to the boxplot bxp + stat_anova_test() ## Not run: # Change the label position # Using coordinates in data units bxp + stat_anova_test(label.x = "1", label.y = 10, hjust = 0) ## End(Not run) # Format the p-value differently custom_p_format <- function(p) { rstatix::p_format(p, accuracy = 0.0001, digits = 3, leading.zero = FALSE) } bxp + stat_anova_test( label = "Anova, italic(p) = {custom_p_format(p)}{p.signif}" ) # Show a detailed label in italic bxp + stat_anova_test(label = "as_detailed_italic") # Faceted plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a ggplot facet bxp <- ggboxplot(df, x = "dose", y = "len", facet.by = "supp") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add p-values bxp + stat_anova_test() # Grouped plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bxp2 <- ggboxplot(df, x = "group", y = "len", color = "dose", palette = "npg") # For each x-position, computes tests between legend groups bxp2 + stat_anova_test(aes(group = dose), label = "p = {p.format}{p.signif}") # For each legend group, computes tests between x variable groups bxp2 + stat_anova_test(aes(group = dose, color = dose), group.by = "legend.var") ## Not run: # Two-way ANOVA: Independent measures #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Visualization: box plots with p-values # Two-way interaction p-values between x and legend (group) variables bxp3 <- ggboxplot( df, x = "supp", y = "len", color = "dose", palette = "jco" ) bxp3 + stat_anova_test(aes(group = dose), method = "two_way") # One-way repeatead measures ANOVA #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% df$id <- as.factor(c(rep(1:10, 3), rep(11:20, 3))) ggboxplot(df, x = "dose", y = "len") + stat_anova_test(method = "one_way_repeated", wid = "id") # Two-way repeatead measures ANOVA #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% df$id <- as.factor(rep(1:10, 6)) ggboxplot(df, x = "dose", y = "len", color = "supp", palette = "jco") + stat_anova_test(aes(group = supp), method = "two_way_repeated", wid = "id") # Grouped one-way repeated measures ANOVA ggboxplot(df, x = "dose", y = "len", color = "supp", palette = "jco") + stat_anova_test(aes(group = supp, color = supp), method = "one_way_repeated", wid = "id", group.by = "legend.var") ## End(Not run)
# Data preparation #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Transform `dose` into factor variable df <- ToothGrowth df$dose <- as.factor(df$dose) # Add individuals id df$id <- rep(1:10, 6) # Add a random grouping variable set.seed(123) df$group <- sample(factor(rep(c("grp1", "grp2", "grp3"), 20))) df$len <- ifelse(df$group == "grp2", df$len+2, df$len) df$len <- ifelse(df$group == "grp3", df$len+7, df$len) head(df, 3) # Basic boxplot #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a basic boxplot # Add 5% and 10% space to the plot bottom and the top, respectively bxp <- ggboxplot(df, x = "dose", y = "len") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add the p-value to the boxplot bxp + stat_anova_test() ## Not run: # Change the label position # Using coordinates in data units bxp + stat_anova_test(label.x = "1", label.y = 10, hjust = 0) ## End(Not run) # Format the p-value differently custom_p_format <- function(p) { rstatix::p_format(p, accuracy = 0.0001, digits = 3, leading.zero = FALSE) } bxp + stat_anova_test( label = "Anova, italic(p) = {custom_p_format(p)}{p.signif}" ) # Show a detailed label in italic bxp + stat_anova_test(label = "as_detailed_italic") # Faceted plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a ggplot facet bxp <- ggboxplot(df, x = "dose", y = "len", facet.by = "supp") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add p-values bxp + stat_anova_test() # Grouped plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bxp2 <- ggboxplot(df, x = "group", y = "len", color = "dose", palette = "npg") # For each x-position, computes tests between legend groups bxp2 + stat_anova_test(aes(group = dose), label = "p = {p.format}{p.signif}") # For each legend group, computes tests between x variable groups bxp2 + stat_anova_test(aes(group = dose, color = dose), group.by = "legend.var") ## Not run: # Two-way ANOVA: Independent measures #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Visualization: box plots with p-values # Two-way interaction p-values between x and legend (group) variables bxp3 <- ggboxplot( df, x = "supp", y = "len", color = "dose", palette = "jco" ) bxp3 + stat_anova_test(aes(group = dose), method = "two_way") # One-way repeatead measures ANOVA #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% df$id <- as.factor(c(rep(1:10, 3), rep(11:20, 3))) ggboxplot(df, x = "dose", y = "len") + stat_anova_test(method = "one_way_repeated", wid = "id") # Two-way repeatead measures ANOVA #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% df$id <- as.factor(rep(1:10, 6)) ggboxplot(df, x = "dose", y = "len", color = "supp", palette = "jco") + stat_anova_test(aes(group = supp), method = "two_way_repeated", wid = "id") # Grouped one-way repeated measures ANOVA ggboxplot(df, x = "dose", y = "len", color = "supp", palette = "jco") + stat_anova_test(aes(group = supp, color = supp), method = "one_way_repeated", wid = "id", group.by = "legend.var") ## End(Not run)
add brackets with label annotation to a ggplot. Helpers for adding p-value or significance levels to a plot.
stat_bracket( mapping = NULL, data = NULL, position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, label = NULL, type = c("text", "expression"), y.position = NULL, xmin = NULL, xmax = NULL, step.increase = 0, step.group.by = NULL, tip.length = 0.03, bracket.nudge.y = 0, bracket.shorten = 0, size = 0.3, label.size = 3.88, family = "", vjust = 0, ... ) geom_bracket( mapping = NULL, data = NULL, stat = "bracket", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, label = NULL, type = c("text", "expression"), y.position = NULL, xmin = NULL, xmax = NULL, step.increase = 0, step.group.by = NULL, tip.length = 0.03, bracket.nudge.y = 0, bracket.shorten = 0, size = 0.3, label.size = 3.88, family = "", vjust = 0, coord.flip = FALSE, ... )
stat_bracket( mapping = NULL, data = NULL, position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, label = NULL, type = c("text", "expression"), y.position = NULL, xmin = NULL, xmax = NULL, step.increase = 0, step.group.by = NULL, tip.length = 0.03, bracket.nudge.y = 0, bracket.shorten = 0, size = 0.3, label.size = 3.88, family = "", vjust = 0, ... ) geom_bracket( mapping = NULL, data = NULL, stat = "bracket", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, label = NULL, type = c("text", "expression"), y.position = NULL, xmin = NULL, xmax = NULL, step.increase = 0, step.group.by = NULL, tip.length = 0.03, bracket.nudge.y = 0, bracket.shorten = 0, size = 0.3, label.size = 3.88, family = "", vjust = 0, coord.flip = FALSE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
label |
character vector with alternative label, if not null test is ignored |
type |
the label type. Can be one of "text" and "expression" (for parsing plotmath expression). |
y.position |
numeric vector with the y positions of the brackets |
xmin |
numeric vector with the positions of the left sides of the brackets |
xmax |
numeric vector with the positions of the right sides of the brackets |
step.increase |
numeric vector with the increase in fraction of total height for every additional comparison to minimize overlap. |
step.group.by |
a variable name for grouping brackets before adding step.increase. Useful to group bracket by facet panel. |
tip.length |
numeric vector with the fraction of total height that the bar goes down to indicate the precise column |
bracket.nudge.y |
Vertical adjustment to nudge brackets by. Useful to move up or move down the bracket. If positive value, brackets will be moved up; if negative value, brackets are moved down. |
bracket.shorten |
a small numeric value in [0-1] for shortening the with of bracket. |
size |
change the width of the lines of the bracket |
label.size |
change the size of the label text |
family |
change the font used for the text |
vjust |
move the text up or down relative to the bracket |
... |
other arguments passed on to |
stat |
The statistical transformation to use on the data for this
layer, either as a |
coord.flip |
logical. If |
df <- ToothGrowth df$dose <- factor(df$dose) # Add bracket with labels ggboxplot(df, x = "dose", y = "len") + geom_bracket( xmin = "0.5", xmax = "1", y.position = 30, label = "t-test, p < 0.05" ) # Customize bracket tip.length tip.length ggboxplot(df, x = "dose", y = "len") + geom_bracket( xmin = "0.5", xmax = "1", y.position = 30, label = "t-test, p < 0.05", tip.length = c(0.2, 0.02) ) #Using plotmath expression ggboxplot(df, x = "dose", y = "len") + geom_bracket( xmin = "0.5", xmax = "1", y.position = 30, label = "list(~italic(p)<=0.001)", type = "expression", tip.length = c(0.2, 0.02) ) # Specify multiple brackets manually ggboxplot(df, x = "dose", y = "len") + geom_bracket( xmin = c("0.5", "1"), xmax = c("1", "2"), y.position = c(30, 35), label = c("***", "**"), tip.length = 0.01 ) # Compute statistical tests and add p-values stat.test <- compare_means(len ~ dose, ToothGrowth, method = "t.test") ggboxplot(df, x = "dose", y = "len") + geom_bracket( aes(xmin = group1, xmax = group2, label = signif(p, 2)), data = stat.test, y.position = 35 ) # Increase step length between brackets ggboxplot(df, x = "dose", y = "len") + geom_bracket( aes(xmin = group1, xmax = group2, label = signif(p, 2)), data = stat.test, y.position = 35, step.increase = 0.1 ) # Or specify the positions of each comparison ggboxplot(df, x = "dose", y = "len") + geom_bracket( aes(xmin = group1, xmax = group2, label = signif(p, 2)), data = stat.test, y.position = c(32, 35, 38) )
df <- ToothGrowth df$dose <- factor(df$dose) # Add bracket with labels ggboxplot(df, x = "dose", y = "len") + geom_bracket( xmin = "0.5", xmax = "1", y.position = 30, label = "t-test, p < 0.05" ) # Customize bracket tip.length tip.length ggboxplot(df, x = "dose", y = "len") + geom_bracket( xmin = "0.5", xmax = "1", y.position = 30, label = "t-test, p < 0.05", tip.length = c(0.2, 0.02) ) #Using plotmath expression ggboxplot(df, x = "dose", y = "len") + geom_bracket( xmin = "0.5", xmax = "1", y.position = 30, label = "list(~italic(p)<=0.001)", type = "expression", tip.length = c(0.2, 0.02) ) # Specify multiple brackets manually ggboxplot(df, x = "dose", y = "len") + geom_bracket( xmin = c("0.5", "1"), xmax = c("1", "2"), y.position = c(30, 35), label = c("***", "**"), tip.length = 0.01 ) # Compute statistical tests and add p-values stat.test <- compare_means(len ~ dose, ToothGrowth, method = "t.test") ggboxplot(df, x = "dose", y = "len") + geom_bracket( aes(xmin = group1, xmax = group2, label = signif(p, 2)), data = stat.test, y.position = 35 ) # Increase step length between brackets ggboxplot(df, x = "dose", y = "len") + geom_bracket( aes(xmin = group1, xmax = group2, label = signif(p, 2)), data = stat.test, y.position = 35, step.increase = 0.1 ) # Or specify the positions of each comparison ggboxplot(df, x = "dose", y = "len") + geom_bracket( aes(xmin = group1, xmax = group2, label = signif(p, 2)), data = stat.test, y.position = c(32, 35, 38) )
Add central tendency measures (mean, median, mode) to density and histogram plots created using ggplots.
Note that, normally, the mode is used for categorical data where we wish to know which is the most common category. Therefore, we can have have two or more values that share the highest frequency. This might be problematic for continuous variable.
For continuous variable, we can consider using mean or median as the measures of the central tendency.
stat_central_tendency( mapping = NULL, data = NULL, geom = c("line", "point"), position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, type = c("mean", "median", "mode"), ... )
stat_central_tendency( mapping = NULL, data = NULL, geom = c("line", "point"), position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, type = c("mean", "median", "mode"), ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
type |
the type of central tendency measure to be used. Possible values
include: |
... |
other arguments to pass to |
# Simple density plot data("mtcars") ggdensity(mtcars, x = "mpg", fill = "red") + scale_x_continuous(limits = c(-1, 50)) + stat_central_tendency(type = "mean", linetype = "dashed") # Color by groups data(iris) ggdensity(iris, "Sepal.Length", color = "Species") + stat_central_tendency(aes(color = Species), type = "median", linetype = 2) # Use geom = "point" for central tendency data(iris) ggdensity(iris, "Sepal.Length", color = "Species") + stat_central_tendency( aes(color = Species), type = "median", geom = "point", size = 4 ) # Facet ggdensity(iris, "Sepal.Length", facet.by = "Species") + stat_central_tendency(type = "mean", color = "red", linetype = 2) + stat_central_tendency(type = "median", color = "blue", linetype = 2)
# Simple density plot data("mtcars") ggdensity(mtcars, x = "mpg", fill = "red") + scale_x_continuous(limits = c(-1, 50)) + stat_central_tendency(type = "mean", linetype = "dashed") # Color by groups data(iris) ggdensity(iris, "Sepal.Length", color = "Species") + stat_central_tendency(aes(color = Species), type = "median", linetype = 2) # Use geom = "point" for central tendency data(iris) ggdensity(iris, "Sepal.Length", color = "Species") + stat_central_tendency( aes(color = Species), type = "median", geom = "point", size = 4 ) # Facet ggdensity(iris, "Sepal.Length", facet.by = "Species") + stat_central_tendency(type = "mean", color = "red", linetype = 2) + stat_central_tendency(type = "median", color = "blue", linetype = 2)
Plot convex hull of a set of points.
stat_chull( mapping = NULL, data = NULL, geom = "path", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
stat_chull( mapping = NULL, data = NULL, geom = "path", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
Other arguments passed on to |
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) # scatter plot with convex hull ggscatter(df, x = "wt", y = "mpg", color = "cyl")+ stat_chull(aes(color = cyl)) ggscatter(df, x = "wt", y = "mpg", color = "cyl")+ stat_chull(aes(color = cyl, fill = cyl), alpha = 0.1, geom = "polygon")
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) # scatter plot with convex hull ggscatter(df, x = "wt", y = "mpg", color = "cyl")+ stat_chull(aes(color = cyl)) ggscatter(df, x = "wt", y = "mpg", color = "cyl")+ stat_chull(aes(color = cyl, fill = cyl), alpha = 0.1, geom = "polygon")
Add mean comparison p-values to a ggplot, such as box blots, dot plots and stripcharts.
stat_compare_means( mapping = NULL, data = NULL, method = NULL, paired = FALSE, method.args = list(), ref.group = NULL, comparisons = NULL, hide.ns = FALSE, label.sep = ", ", label = NULL, label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, vjust = 0, tip.length = 0.03, bracket.size = 0.3, step.increase = 0, symnum.args = list(), geom = "text", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
stat_compare_means( mapping = NULL, data = NULL, method = NULL, paired = FALSE, method.args = list(), ref.group = NULL, comparisons = NULL, hide.ns = FALSE, label.sep = ", ", label = NULL, label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, vjust = 0, tip.length = 0.03, bracket.size = 0.3, step.increase = 0, symnum.args = list(), geom = "text", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
method |
a character string indicating which method to be used for comparing means. |
paired |
a logical indicating whether you want a paired test. Used only
in |
method.args |
a list of additional arguments used for the test method.
For example one might use |
ref.group |
a character string specifying the reference group. If specified, for a given grouping variable, each of the group levels will be compared to the reference group (i.e. control group).
|
comparisons |
A list of length-2 vectors. The entries in the vector are either the names of 2 values on the x-axis or the 2 integers that correspond to the index of the groups of interest, to be compared. |
hide.ns |
logical value. If TRUE, hide ns symbol when displaying significance levels. |
label.sep |
a character string to separate the terms. Default is ", ", to separate the correlation coefficient and the p.value. |
label |
character string specifying label type. Allowed values include "p.signif" (shows the significance levels), "p.format" (shows the formatted p value). |
label.x.npc , label.y.npc
|
can be
|
label.x , label.y
|
|
vjust |
move the text up or down relative to the bracket. |
tip.length |
numeric vector with the fraction of total height that the bar goes down to indicate the precise column. Default is 0.03. Can be of same length as the number of comparisons to adjust specifically the tip lenth of each comparison. For example tip.length = c(0.01, 0.03). If too short they will be recycled. |
bracket.size |
Width of the lines of the bracket. |
step.increase |
numeric vector with the increase in fraction of total height for every additional comparison to minimize overlap. |
symnum.args |
a list of arguments to pass to the function
In other words, we use the following convention for symbols indicating statistical significance:
|
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
other arguments to pass to |
# Load data data("ToothGrowth") head(ToothGrowth) # Two independent groups #::::::::::::::::::::::::::::::::::::::::::::::::: p <- ggboxplot(ToothGrowth, x = "supp", y = "len", color = "supp", palette = "npg", add = "jitter") # Add p-value p + stat_compare_means() # Change method p + stat_compare_means(method = "t.test") # Paired samples #::::::::::::::::::::::::::::::::::::::::::::::::: ggpaired(ToothGrowth, x = "supp", y = "len", color = "supp", line.color = "gray", line.size = 0.4, palette = "npg")+ stat_compare_means(paired = TRUE) # More than two groups #::::::::::::::::::::::::::::::::::::::::::::::::: # Pairwise comparisons: Specify the comparisons you want my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") ) ggboxplot(ToothGrowth, x = "dose", y = "len", color = "dose", palette = "npg")+ # Add pairwise comparisons p-value stat_compare_means(comparisons = my_comparisons, label.y = c(29, 35, 40))+ stat_compare_means(label.y = 45) # Add global Anova p-value # Multiple pairwise test against a reference group ggboxplot(ToothGrowth, x = "dose", y = "len", color = "dose", palette = "npg")+ stat_compare_means(method = "anova", label.y = 40)+ # Add global p-value stat_compare_means(aes(label = after_stat(p.signif)), method = "t.test", ref.group = "0.5") # Multiple grouping variables #::::::::::::::::::::::::::::::::::::::::::::::::: # Box plot facetted by "dose" p <- ggboxplot(ToothGrowth, x = "supp", y = "len", color = "supp", palette = "npg", add = "jitter", facet.by = "dose", short.panel.labs = FALSE) # Use only p.format as label. Remove method name. p + stat_compare_means( aes(label = paste0("p = ", after_stat(p.format))) )
# Load data data("ToothGrowth") head(ToothGrowth) # Two independent groups #::::::::::::::::::::::::::::::::::::::::::::::::: p <- ggboxplot(ToothGrowth, x = "supp", y = "len", color = "supp", palette = "npg", add = "jitter") # Add p-value p + stat_compare_means() # Change method p + stat_compare_means(method = "t.test") # Paired samples #::::::::::::::::::::::::::::::::::::::::::::::::: ggpaired(ToothGrowth, x = "supp", y = "len", color = "supp", line.color = "gray", line.size = 0.4, palette = "npg")+ stat_compare_means(paired = TRUE) # More than two groups #::::::::::::::::::::::::::::::::::::::::::::::::: # Pairwise comparisons: Specify the comparisons you want my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") ) ggboxplot(ToothGrowth, x = "dose", y = "len", color = "dose", palette = "npg")+ # Add pairwise comparisons p-value stat_compare_means(comparisons = my_comparisons, label.y = c(29, 35, 40))+ stat_compare_means(label.y = 45) # Add global Anova p-value # Multiple pairwise test against a reference group ggboxplot(ToothGrowth, x = "dose", y = "len", color = "dose", palette = "npg")+ stat_compare_means(method = "anova", label.y = 40)+ # Add global p-value stat_compare_means(aes(label = after_stat(p.signif)), method = "t.test", ref.group = "0.5") # Multiple grouping variables #::::::::::::::::::::::::::::::::::::::::::::::::: # Box plot facetted by "dose" p <- ggboxplot(ToothGrowth, x = "supp", y = "len", color = "supp", palette = "npg", add = "jitter", facet.by = "dose", short.panel.labs = FALSE) # Use only p.format as label. Remove method name. p + stat_compare_means( aes(label = paste0("p = ", after_stat(p.format))) )
Plot confidence ellipses around barycenters. The method for
computing confidence ellipses has been modified from FactoMineR::coord.ellipse()
.
stat_conf_ellipse( mapping = NULL, data = NULL, geom = "path", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, level = 0.95, npoint = 100, bary = TRUE, ... )
stat_conf_ellipse( mapping = NULL, data = NULL, geom = "path", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, level = 0.95, npoint = 100, bary = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
level |
confidence level used to construct the ellipses. By default, 0.95. |
npoint |
number of points used to draw the ellipses. |
bary |
logical value. If TRUE, the coordinates of the ellipse around the barycentre of individuals are calculated. |
... |
Other arguments passed on to |
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) # scatter plot with confidence ellipses ggscatter(df, x = "wt", y = "mpg", color = "cyl")+ stat_conf_ellipse(aes(color = cyl)) ggscatter(df, x = "wt", y = "mpg", color = "cyl")+ stat_conf_ellipse(aes(color = cyl, fill = cyl), alpha = 0.1, geom = "polygon")
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) # scatter plot with confidence ellipses ggscatter(df, x = "wt", y = "mpg", color = "cyl")+ stat_conf_ellipse(aes(color = cyl)) ggscatter(df, x = "wt", y = "mpg", color = "cyl")+ stat_conf_ellipse(aes(color = cyl, fill = cyl), alpha = 0.1, geom = "polygon")
Add correlation coefficients with p-values to a scatter plot. Can be also used to add 'R2'.
stat_cor( mapping = NULL, data = NULL, method = "pearson", alternative = "two.sided", cor.coef.name = c("R", "rho", "tau"), label.sep = ", ", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, output.type = "expression", digits = 2, r.digits = digits, p.digits = digits, r.accuracy = NULL, p.accuracy = NULL, geom = "text", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
stat_cor( mapping = NULL, data = NULL, method = "pearson", alternative = "two.sided", cor.coef.name = c("R", "rho", "tau"), label.sep = ", ", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, output.type = "expression", digits = 2, r.digits = digits, p.digits = digits, r.accuracy = NULL, p.accuracy = NULL, geom = "text", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
method |
a character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman". |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter. |
cor.coef.name |
character. Can be one of |
label.sep |
a character string to separate the terms. Default is ", ", to separate the correlation coefficient and the p.value. |
label.x.npc , label.y.npc
|
can be
If too short they will be recycled. |
label.x , label.y
|
|
output.type |
character One of "expression", "latex", "tex" or "text". |
digits , r.digits , p.digits
|
integer indicating the number of decimal places (round) or significant digits (signif) to be used for the correlation coefficient and the p-value, respectively.. |
r.accuracy |
a real value specifying the number of decimal places of
precision for the correlation coefficient. Default is NULL. Use (e.g.) 0.01
to show 2 decimal places of precision. If specified, then |
p.accuracy |
a real value specifying the number of decimal places of
precision for the p-value. Default is NULL. Use (e.g.) 0.0001 to show 4
decimal places of precision. If specified, then |
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
other arguments to pass to |
correlation coefficient
correlation coefficient squared
formatted label for the correlation coefficient
formatted label for the squared correlation coefficient
label for the p-value
default labeldisplayed by stat_cor()
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) # Scatter plot with correlation coefficient #::::::::::::::::::::::::::::::::::::::::::::::::: sp <- ggscatter(df, x = "wt", y = "mpg", add = "reg.line", # Add regressin line add.params = list(color = "blue", fill = "lightgray"), # Customize reg. line conf.int = TRUE # Add confidence interval ) # Add correlation coefficient sp + stat_cor(method = "pearson", label.x = 3, label.y = 30) # Specify the number of decimal places of precision for p and r # Using 3 decimal places for the p-value and # 2 decimal places for the correlation coefficient (r) sp + stat_cor(p.accuracy = 0.001, r.accuracy = 0.01) # Show only the r.label but not the p.label sp + stat_cor(aes(label = ..r.label..), label.x = 3) # Use R2 instead of R ggscatter(df, x = "wt", y = "mpg", add = "reg.line") + stat_cor( aes(label = paste(..rr.label.., ..p.label.., sep = "~`,`~")), label.x = 3 ) # Color by groups and facet #:::::::::::::::::::::::::::::::::::::::::::::::::::: sp <- ggscatter(df, x = "wt", y = "mpg", color = "cyl", palette = "jco", add = "reg.line", conf.int = TRUE) sp + stat_cor(aes(color = cyl), label.x = 3)
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) # Scatter plot with correlation coefficient #::::::::::::::::::::::::::::::::::::::::::::::::: sp <- ggscatter(df, x = "wt", y = "mpg", add = "reg.line", # Add regressin line add.params = list(color = "blue", fill = "lightgray"), # Customize reg. line conf.int = TRUE # Add confidence interval ) # Add correlation coefficient sp + stat_cor(method = "pearson", label.x = 3, label.y = 30) # Specify the number of decimal places of precision for p and r # Using 3 decimal places for the p-value and # 2 decimal places for the correlation coefficient (r) sp + stat_cor(p.accuracy = 0.001, r.accuracy = 0.01) # Show only the r.label but not the p.label sp + stat_cor(aes(label = ..r.label..), label.x = 3) # Use R2 instead of R ggscatter(df, x = "wt", y = "mpg", add = "reg.line") + stat_cor( aes(label = paste(..rr.label.., ..p.label.., sep = "~`,`~")), label.x = 3 ) # Color by groups and facet #:::::::::::::::::::::::::::::::::::::::::::::::::::: sp <- ggscatter(df, x = "wt", y = "mpg", color = "cyl", palette = "jco", add = "reg.line", conf.int = TRUE) sp + stat_cor(aes(color = cyl), label.x = 3)
Add automatically Friedman test p-values to a ggplot, such as box blots, dot plots and stripcharts.
stat_friedman_test( mapping = NULL, data = NULL, wid = NULL, group.by = NULL, label = "{method}, p = {p.format}", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, step.increase = 0.1, p.adjust.method = "holm", significance = list(), geom = "text", position = "identity", na.rm = FALSE, show.legend = FALSE, inherit.aes = TRUE, parse = FALSE, ... )
stat_friedman_test( mapping = NULL, data = NULL, wid = NULL, group.by = NULL, label = "{method}, p = {p.format}", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, step.increase = 0.1, p.adjust.method = "holm", significance = list(), geom = "text", position = "identity", na.rm = FALSE, show.legend = FALSE, inherit.aes = TRUE, parse = FALSE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
wid |
(factor) column name containing individuals/subjects identifier.
Should be unique per individual. Required only for repeated measure tests
( |
group.by |
(optional) character vector specifying the grouping variable; it should be used only for grouped plots. Possible values are :
|
label |
the column containing the label (e.g.: label = "p" or label =
"p.adj"), where |
label.x.npc , label.y.npc
|
can be
|
label.x , label.y
|
|
step.increase |
numeric vector with the increase in fraction of total height for every additional comparison to minimize overlap. |
p.adjust.method |
method for adjusting p values (see
|
significance |
a list of arguments specifying the signifcance cutpoints
and symbols. For example, In other words, we use the following convention for symbols indicating statistical significance:
|
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
parse |
If TRUE, the labels will be parsed into expressions and displayed
as described in |
... |
other arguments passed to the function |
statistic: the value of the test statistic (Chi-squared).
df: the degrees of freedom of the approximate chi-squared distribution of the test statistic.
p: p-value.
p.adj: Adjusted p-values.
p.signif: P-value significance.
p.adj.signif: Adjusted p-value significance.
p.format: Formated p-value.
p.adj.format: Formated adjusted p-value.
n: number of samples.
# Data preparation #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Transform `dose` into factor variable df <- ToothGrowth df$dose <- as.factor(df$dose) df$id <- as.factor(c(rep(1:10, 3), rep(11:20, 3))) # Add a random grouping variable set.seed(123) df$group <- sample(factor(rep(c("grp1", "grp2", "grp3"), 20))) df$len <- ifelse(df$group == "grp2", df$len+2, df$len) df$len <- ifelse(df$group == "grp3", df$len+7, df$len) head(df, 3) # Basic boxplot #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a basic boxplot # Add 5% and 10% space to the plot bottom and the top, respectively bxp <- ggboxplot(df, x = "dose", y = "len") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add the p-value to the boxplot bxp + stat_friedman_test(aes(wid = id)) # Change the label position # Using coordinates in data units bxp + stat_friedman_test(aes(wid = id), label.x = "1", label.y = 10, hjust = 0) # Format the p-value differently custom_p_format <- function(p) { rstatix::p_format(p, accuracy = 0.0001, digits = 3, leading.zero = FALSE) } bxp + stat_friedman_test( aes(wid = id), label = "Friedman test, italic(p) = {custom_p_format(p)}{p.signif}" ) # Show a detailed label in italic bxp + stat_friedman_test(aes(wid = id), label = "as_detailed_italic") # Faceted plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a ggplot facet df$id <- rep(1:10,6) bxp <- ggboxplot(df, x = "dose", y = "len", facet.by = "supp") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add p-values bxp + stat_friedman_test(aes(wid = id)) # Grouped plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% df$id <- rep(1:10,6) bxp <- ggboxplot(df, x = "dose", y = "len", color = "supp", palette = "jco") # For each legend group, computes tests within x variable groups bxp + stat_friedman_test(aes(wid = id, group = supp, color = supp), within = "x") # For each x-position, computes tests within legend variable groups bxp + stat_friedman_test( aes(wid = id, group = supp, color = supp), within = "group", label = "p = {p.format}" )
# Data preparation #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Transform `dose` into factor variable df <- ToothGrowth df$dose <- as.factor(df$dose) df$id <- as.factor(c(rep(1:10, 3), rep(11:20, 3))) # Add a random grouping variable set.seed(123) df$group <- sample(factor(rep(c("grp1", "grp2", "grp3"), 20))) df$len <- ifelse(df$group == "grp2", df$len+2, df$len) df$len <- ifelse(df$group == "grp3", df$len+7, df$len) head(df, 3) # Basic boxplot #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a basic boxplot # Add 5% and 10% space to the plot bottom and the top, respectively bxp <- ggboxplot(df, x = "dose", y = "len") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add the p-value to the boxplot bxp + stat_friedman_test(aes(wid = id)) # Change the label position # Using coordinates in data units bxp + stat_friedman_test(aes(wid = id), label.x = "1", label.y = 10, hjust = 0) # Format the p-value differently custom_p_format <- function(p) { rstatix::p_format(p, accuracy = 0.0001, digits = 3, leading.zero = FALSE) } bxp + stat_friedman_test( aes(wid = id), label = "Friedman test, italic(p) = {custom_p_format(p)}{p.signif}" ) # Show a detailed label in italic bxp + stat_friedman_test(aes(wid = id), label = "as_detailed_italic") # Faceted plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a ggplot facet df$id <- rep(1:10,6) bxp <- ggboxplot(df, x = "dose", y = "len", facet.by = "supp") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add p-values bxp + stat_friedman_test(aes(wid = id)) # Grouped plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% df$id <- rep(1:10,6) bxp <- ggboxplot(df, x = "dose", y = "len", color = "supp", palette = "jco") # For each legend group, computes tests within x variable groups bxp + stat_friedman_test(aes(wid = id, group = supp, color = supp), within = "x") # For each x-position, computes tests within legend variable groups bxp + stat_friedman_test( aes(wid = id, group = supp, color = supp), within = "group", label = "p = {p.format}" )
Add Kruskal-Wallis test p-values to a ggplot, such as box blots, dot plots and stripcharts.
stat_kruskal_test( mapping = NULL, data = NULL, group.by = NULL, label = "{method}, p = {p.format}", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, step.increase = 0.1, p.adjust.method = "holm", significance = list(), geom = "text", position = "identity", na.rm = FALSE, show.legend = FALSE, inherit.aes = TRUE, parse = FALSE, ... )
stat_kruskal_test( mapping = NULL, data = NULL, group.by = NULL, label = "{method}, p = {p.format}", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, step.increase = 0.1, p.adjust.method = "holm", significance = list(), geom = "text", position = "identity", na.rm = FALSE, show.legend = FALSE, inherit.aes = TRUE, parse = FALSE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
group.by |
(optional) character vector specifying the grouping variable; it should be used only for grouped plots. Possible values are :
|
label |
the column containing the label (e.g.: label = "p" or label =
"p.adj"), where |
label.x.npc , label.y.npc
|
can be
|
label.x , label.y
|
|
step.increase |
numeric vector with the increase in fraction of total height for every additional comparison to minimize overlap. |
p.adjust.method |
method for adjusting p values (see
|
significance |
a list of arguments specifying the signifcance cutpoints
and symbols. For example, In other words, we use the following convention for symbols indicating statistical significance:
|
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
parse |
If TRUE, the labels will be parsed into expressions and displayed
as described in |
... |
other arguments passed to the function |
statistic: the Kruskal-Wallis rank sum chi-squared statistic used to compute the p-value.
p: p-value.
p.adj: Adjusted p-values.
p.signif: P-value significance.
p.adj.signif: Adjusted p-value significance.
p.format: Formated p-value.
p.adj.format: Formated adjusted p-value.
n: number of samples.
# Data preparation #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Transform `dose` into factor variable df <- ToothGrowth df$dose <- as.factor(df$dose) # Add a random grouping variable set.seed(123) df$group <- sample(factor(rep(c("grp1", "grp2", "grp3"), 20))) df$len <- ifelse(df$group == "grp2", df$len+2, df$len) df$len <- ifelse(df$group == "grp3", df$len+7, df$len) head(df, 3) # Basic boxplot #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a basic boxplot # Add 5% and 10% space to the plot bottom and the top, respectively bxp <- ggboxplot(df, x = "dose", y = "len") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add the p-value to the boxplot bxp + stat_kruskal_test() # Change the label position # Using coordinates in data units bxp + stat_kruskal_test(label.x = "1", label.y = 10, hjust = 0) # Format the p-value differently custom_p_format <- function(p) { rstatix::p_format(p, accuracy = 0.0001, digits = 3, leading.zero = FALSE) } bxp + stat_kruskal_test( label = "Kruskal-Wallis, italic(p) = {custom_p_format(p)}{p.signif}" ) # Show a detailed label in italic bxp + stat_kruskal_test(label = "as_detailed_italic") # Faceted plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a ggplot facet bxp <- ggboxplot(df, x = "dose", y = "len", facet.by = "supp") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add p-values bxp + stat_kruskal_test() # Grouped plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bxp2 <- ggboxplot(df, x = "group", y = "len", color = "dose", palette = "npg") # For each x-position, computes tests between legend groups bxp2 + stat_kruskal_test(aes(group = dose), label = "p = {p.format}{p.signif}") # For each legend group, computes tests between x variable groups bxp2 + stat_kruskal_test(aes(group = dose, color = dose), group.by = "legend.var")
# Data preparation #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Transform `dose` into factor variable df <- ToothGrowth df$dose <- as.factor(df$dose) # Add a random grouping variable set.seed(123) df$group <- sample(factor(rep(c("grp1", "grp2", "grp3"), 20))) df$len <- ifelse(df$group == "grp2", df$len+2, df$len) df$len <- ifelse(df$group == "grp3", df$len+7, df$len) head(df, 3) # Basic boxplot #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a basic boxplot # Add 5% and 10% space to the plot bottom and the top, respectively bxp <- ggboxplot(df, x = "dose", y = "len") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add the p-value to the boxplot bxp + stat_kruskal_test() # Change the label position # Using coordinates in data units bxp + stat_kruskal_test(label.x = "1", label.y = 10, hjust = 0) # Format the p-value differently custom_p_format <- function(p) { rstatix::p_format(p, accuracy = 0.0001, digits = 3, leading.zero = FALSE) } bxp + stat_kruskal_test( label = "Kruskal-Wallis, italic(p) = {custom_p_format(p)}{p.signif}" ) # Show a detailed label in italic bxp + stat_kruskal_test(label = "as_detailed_italic") # Faceted plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a ggplot facet bxp <- ggboxplot(df, x = "dose", y = "len", facet.by = "supp") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add p-values bxp + stat_kruskal_test() # Grouped plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bxp2 <- ggboxplot(df, x = "group", y = "len", color = "dose", palette = "npg") # For each x-position, computes tests between legend groups bxp2 + stat_kruskal_test(aes(group = dose), label = "p = {p.format}{p.signif}") # For each legend group, computes tests between x variable groups bxp2 + stat_kruskal_test(aes(group = dose, color = dose), group.by = "legend.var")
Draw the mean point of each group.
stat_mean( mapping = NULL, data = NULL, geom = "point", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
stat_mean( mapping = NULL, data = NULL, geom = "point", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
other arguments to pass to |
stat_conf_ellipse
, stat_chull
and
ggscatter
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) # Scatter plot with ellipses and group mean points ggscatter(df, x = "wt", y = "mpg", color = "cyl", shape = "cyl", ellipse = TRUE)+ stat_mean(aes(color = cyl, shape = cyl), size = 4)
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) # Scatter plot with ellipses and group mean points ggscatter(df, x = "wt", y = "mpg", color = "cyl", shape = "cyl", ellipse = TRUE)+ stat_mean(aes(color = cyl, shape = cyl), size = 4)
Overlay normal density plot (with the same mean and SD) to the density distribution of 'x'. This is useful for visually inspecting the degree of deviance from normality.
stat_overlay_normal_density( mapping = NULL, data = NULL, geom = "line", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
stat_overlay_normal_density( mapping = NULL, data = NULL, geom = "line", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
other arguments to pass to |
# Simpledensity plot data("mtcars") ggdensity(mtcars, x = "mpg", fill = "red") + scale_x_continuous(limits = c(-1, 50)) + stat_overlay_normal_density(color = "red", linetype = "dashed") # Color by groups data(iris) ggdensity(iris, "Sepal.Length", color = "Species") + stat_overlay_normal_density(aes(color = Species), linetype = "dashed") # Facet ggdensity(iris, "Sepal.Length", facet.by = "Species") + stat_overlay_normal_density(color = "red", linetype = "dashed")
# Simpledensity plot data("mtcars") ggdensity(mtcars, x = "mpg", fill = "red") + scale_x_continuous(limits = c(-1, 50)) + stat_overlay_normal_density(color = "red", linetype = "dashed") # Color by groups data(iris) ggdensity(iris, "Sepal.Length", color = "Species") + stat_overlay_normal_density(aes(color = Species), linetype = "dashed") # Facet ggdensity(iris, "Sepal.Length", facet.by = "Species") + stat_overlay_normal_density(color = "red", linetype = "dashed")
Add manually p-values to a ggplot, such as box blots, dot plots and stripcharts. Frequently asked questions are available on Datanovia ggpubr FAQ page, for example:
How to Add P-Values onto a Grouped GGPLOT using the GGPUBR R Package
How to Create Stacked Bar Plots with Error Bars and P-values
stat_pvalue_manual( data, label = NULL, y.position = "y.position", xmin = "group1", xmax = "group2", x = NULL, size = 3.88, label.size = size, bracket.size = 0.3, bracket.nudge.y = 0, bracket.shorten = 0, color = "black", linetype = 1, tip.length = 0.03, remove.bracket = FALSE, step.increase = 0, step.group.by = NULL, hide.ns = FALSE, vjust = 0, coord.flip = FALSE, position = "identity", ... )
stat_pvalue_manual( data, label = NULL, y.position = "y.position", xmin = "group1", xmax = "group2", x = NULL, size = 3.88, label.size = size, bracket.size = 0.3, bracket.nudge.y = 0, bracket.shorten = 0, color = "black", linetype = 1, tip.length = 0.03, remove.bracket = FALSE, step.increase = 0, step.group.by = NULL, hide.ns = FALSE, vjust = 0, coord.flip = FALSE, position = "identity", ... )
data |
a data frame containing statitistical test results. The expected
default format should contain the following columns: |
label |
the column containing the label (e.g.: label = "p" or label =
"p.adj"), where |
y.position |
column containing the coordinates (in data units) to be used for absolute positioning of the label. Default value is "y.position". Can be also a numeric vector. |
xmin |
column containing the position of the left sides of the brackets. Default value is "group1". |
xmax |
(optional) column containing the position of the right sides of the brackets. Default value is "group2". If NULL, the p-values are plotted as a simple text. |
x |
x position of the p-value. Should be used only when you want plot the p-value as text (without brackets). |
size , label.size
|
size of label text. |
bracket.size |
Width of the lines of the bracket. |
bracket.nudge.y |
Vertical adjustment to nudge brackets by. Useful to move up or move down the bracket. If positive value, brackets will be moved up; if negative value, brackets are moved down. |
bracket.shorten |
a small numeric value in [0-1] for shortening the with of bracket. |
color |
text and line color. Can be variable name in the data for coloring by groups. |
linetype |
linetype. Can be variable name in the data for changing linetype by groups. |
tip.length |
numeric vector with the fraction of total height that the bar goes down to indicate the precise column. Default is 0.03. |
remove.bracket |
logical, if |
step.increase |
numeric vector with the increase in fraction of total height for every additional comparison to minimize overlap. |
step.group.by |
a variable name for grouping brackets before adding step.increase. Useful to group bracket by facet panel. |
hide.ns |
can be logical value or a character vector.
|
vjust |
move the text up or down relative to the bracket. Can be also a column name available in the data. |
coord.flip |
logical. If |
position |
position adjustment, either as a string, or the result of a call to a position adjustment function. |
... |
other arguments passed to the function |
# T-test stat.test <- compare_means( len ~ dose, data = ToothGrowth, method = "t.test" ) stat.test # Create a simple box plot p <- ggboxplot(ToothGrowth, x = "dose", y = "len") p # Perform a t-test between groups stat.test <- compare_means( len ~ dose, data = ToothGrowth, method = "t.test" ) stat.test # Add manually p-values from stat.test data # First specify the y.position of each comparison stat.test <- stat.test %>% mutate(y.position = c(29, 35, 39)) p + stat_pvalue_manual(stat.test, label = "p.adj") # Customize the label with glue expression # (https://github.com/tidyverse/glue) p + stat_pvalue_manual(stat.test, label = "p = {p.adj}") # Grouped bar plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ToothGrowth$dose <- as.factor(ToothGrowth$dose) # Comparisons against reference stat.test <- compare_means( len ~ dose, data = ToothGrowth, group.by = "supp", method = "t.test", ref.group = "0.5" ) stat.test # Plot bp <- ggbarplot(ToothGrowth, x = "supp", y = "len", fill = "dose", palette = "jco", add = "mean_sd", add.params = list(group = "dose"), position = position_dodge(0.8)) bp + stat_pvalue_manual( stat.test, x = "supp", y.position = 33, label = "p.signif", position = position_dodge(0.8) )
# T-test stat.test <- compare_means( len ~ dose, data = ToothGrowth, method = "t.test" ) stat.test # Create a simple box plot p <- ggboxplot(ToothGrowth, x = "dose", y = "len") p # Perform a t-test between groups stat.test <- compare_means( len ~ dose, data = ToothGrowth, method = "t.test" ) stat.test # Add manually p-values from stat.test data # First specify the y.position of each comparison stat.test <- stat.test %>% mutate(y.position = c(29, 35, 39)) p + stat_pvalue_manual(stat.test, label = "p.adj") # Customize the label with glue expression # (https://github.com/tidyverse/glue) p + stat_pvalue_manual(stat.test, label = "p = {p.adj}") # Grouped bar plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ToothGrowth$dose <- as.factor(ToothGrowth$dose) # Comparisons against reference stat.test <- compare_means( len ~ dose, data = ToothGrowth, group.by = "supp", method = "t.test", ref.group = "0.5" ) stat.test # Plot bp <- ggbarplot(ToothGrowth, x = "supp", y = "len", fill = "dose", palette = "jco", add = "mean_sd", add.params = list(group = "dose"), position = position_dodge(0.8)) bp + stat_pvalue_manual( stat.test, x = "supp", y.position = 33, label = "p.signif", position = position_dodge(0.8) )
add pairwise comparison p-values to a ggplot such as box plots, dot plots and stripcharts.
stat_pwc( mapping = NULL, data = NULL, method = "wilcox_test", method.args = list(), ref.group = NULL, label = "p.format", y.position = NULL, group.by = NULL, dodge = 0.8, bracket.nudge.y = 0.05, bracket.shorten = 0, bracket.group.by = c("x.var", "legend.var"), step.increase = 0.12, tip.length = 0.03, size = 0.3, label.size = 3.88, family = "", vjust = 0, hjust = 0.5, p.adjust.method = "holm", p.adjust.by = c("group", "panel"), symnum.args = list(), hide.ns = FALSE, remove.bracket = FALSE, position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, parse = FALSE, ... ) geom_pwc( mapping = NULL, data = NULL, stat = "pwc", method = "wilcox_test", method.args = list(), ref.group = NULL, label = "p.format", y.position = NULL, group.by = NULL, dodge = 0.8, stack = FALSE, step.increase = 0.12, tip.length = 0.03, bracket.nudge.y = 0.05, bracket.shorten = 0, bracket.group.by = c("x.var", "legend.var"), size = 0.3, label.size = 3.88, family = "", vjust = 0, hjust = 0.5, p.adjust.method = "holm", p.adjust.by = c("group", "panel"), symnum.args = list(), hide.ns = FALSE, remove.bracket = FALSE, position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, parse = FALSE, ... )
stat_pwc( mapping = NULL, data = NULL, method = "wilcox_test", method.args = list(), ref.group = NULL, label = "p.format", y.position = NULL, group.by = NULL, dodge = 0.8, bracket.nudge.y = 0.05, bracket.shorten = 0, bracket.group.by = c("x.var", "legend.var"), step.increase = 0.12, tip.length = 0.03, size = 0.3, label.size = 3.88, family = "", vjust = 0, hjust = 0.5, p.adjust.method = "holm", p.adjust.by = c("group", "panel"), symnum.args = list(), hide.ns = FALSE, remove.bracket = FALSE, position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, parse = FALSE, ... ) geom_pwc( mapping = NULL, data = NULL, stat = "pwc", method = "wilcox_test", method.args = list(), ref.group = NULL, label = "p.format", y.position = NULL, group.by = NULL, dodge = 0.8, stack = FALSE, step.increase = 0.12, tip.length = 0.03, bracket.nudge.y = 0.05, bracket.shorten = 0, bracket.group.by = c("x.var", "legend.var"), size = 0.3, label.size = 3.88, family = "", vjust = 0, hjust = 0.5, p.adjust.method = "holm", p.adjust.by = c("group", "panel"), symnum.args = list(), hide.ns = FALSE, remove.bracket = FALSE, position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, parse = FALSE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
method |
a character string indicating which method to be used for
pairwise comparisons. Default is |
method.args |
a list of additional arguments used for the test method.
For example one might use |
ref.group |
a character string or a numeric value specifying the reference group. If specified, for a given grouping variable, each of the group levels will be compared to the reference group (i.e. control group).
Allowed values can be:
|
label |
character string specifying label. Can be:
. |
y.position |
numeric vector with the y positions of the brackets |
group.by |
(optional) character vector specifying the grouping variable; it should be used only for grouped plots. Possible values are :
|
dodge |
dodge width for grouped ggplot/test. Default is 0.8. It's used to
dodge the brackets position when |
bracket.nudge.y |
Vertical adjustment to nudge brackets by (in fraction of the total height). Useful to move up or move down the bracket. If positive value, brackets will be moved up; if negative value, brackets are moved down. |
bracket.shorten |
a small numeric value in [0-1] for shortening the width of bracket. |
bracket.group.by |
(optional); a variable name for grouping brackets
before adding step.increase. Useful for grouped plots. Possible values
include |
step.increase |
numeric vector with the increase in fraction of total height for every additional comparison to minimize overlap. |
tip.length |
numeric vector with the fraction of total height that the bar goes down to indicate the precise column/ |
size |
change the width of the lines of the bracket |
label.size |
change the size of the label text |
family |
change the font used for the text |
vjust |
move the text up or down relative to the bracket. |
hjust |
move the text left or right relative to the bracket. |
p.adjust.method |
method for adjusting p values (see
|
p.adjust.by |
possible value is one of |
symnum.args |
a list of arguments to pass to the function
In other words, we use the following convention for symbols indicating statistical significance:
|
hide.ns |
can be logical value ( |
remove.bracket |
logical, if
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
parse |
logical for parsing plotmath expression. |
... |
other arguments passed on to |
stat |
The statistical transformation to use on the data for this
layer, either as a |
stack |
logical value. Default is FALSE; should be set to TRUE for
stacked bar plots or line plots. If TRUE, then the brackets are
automatically removed and the |
Notes on adjusted p-values and facet. When using the ggplot facet functions, the p-values are computed and adjusted by panel, without taking into account the other panels. This is by design in ggplot2.
In this case, when there is only one computed p-value by panel, then using 'label = "p"' or 'label = "p.adj"' will give the same results using 'geom_pwc()'. Again, p-value computation and adjustment in a given facet panel is done independently to the other panels.
One might want to adjust the p-values of all the facet panels together. There are two solutions for that:
Using ggadjust_pvalue(p)
after creating the plot p
or adding the adjusted p-value manually using stat_pvalue_manual()
. Read more at:
df <- ToothGrowth df$dose <- factor(df$dose) # Data preparation #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Transform `dose` into factor variable df <- ToothGrowth df$dose <- as.factor(df$dose) # Add a random grouping variable df$group <- factor(rep(c("grp1", "grp2"), 30)) head(df, 3) # Two groups by x position #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a box plot # Add 10% spaces between the p-value labels and the plot border bxp <- ggboxplot( df, x = "dose", y = "len", color = "supp", palette = c("#00AFBB", "#E7B800") ) + scale_y_continuous(expand = expansion(mult = c(0.05, 0.10))) # Add p-values onto the box plots # label can be "p.format" or "p.adj.format" bxp + geom_pwc( aes(group = supp), tip.length = 0, method = "t_test", label = "p.format" ) # Show adjusted p-values and significance levels # Hide ns (non-significant) bxp + geom_pwc( aes(group = supp), tip.length = 0, method = "t_test", label = "{p.adj.format}{p.adj.signif}", p.adjust.method = "bonferroni", p.adjust.by = "panel", hide.ns = TRUE ) # Complex cases #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # 1. Add p-values of OJ vs VC at each dose group bxp.complex <- bxp + geom_pwc( aes(group = supp), tip.length = 0, method = "t_test", label = "p.adj.format", p.adjust.method = "bonferroni", p.adjust.by = "panel" ) # 2. Add pairwise comparisons between dose levels # Nudge up the brackets by 20% of the total height bxp.complex <- bxp.complex + geom_pwc( method = "t_test", label = "p.adj.format", p.adjust.method = "bonferroni", bracket.nudge.y = 0.2 ) # 3. Display the plot bxp.complex # Three groups by x position #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Simple plots #_____________________________________ # Box plots with p-values bxp <- ggboxplot( df, x = "supp", y = "len", fill = "dose", palette = "npg" ) bxp + geom_pwc( aes(group = dose), tip.length = 0, method = "t_test", label = "p.adj.format", bracket.nudge.y = -0.08 ) + scale_y_continuous(expand = expansion(mult = c(0, 0.1))) # Bar plots with p-values bp <- ggbarplot( df, x = "supp", y = "len", fill = "dose", palette = "npg", add = "mean_sd", position = position_dodge(0.8) ) bp + geom_pwc( aes(group = dose), tip.length = 0, method = "t_test", label = "p.adj.format", bracket.nudge.y = -0.08 ) + scale_y_continuous(expand = expansion(mult = c(0, 0.1)))
df <- ToothGrowth df$dose <- factor(df$dose) # Data preparation #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Transform `dose` into factor variable df <- ToothGrowth df$dose <- as.factor(df$dose) # Add a random grouping variable df$group <- factor(rep(c("grp1", "grp2"), 30)) head(df, 3) # Two groups by x position #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a box plot # Add 10% spaces between the p-value labels and the plot border bxp <- ggboxplot( df, x = "dose", y = "len", color = "supp", palette = c("#00AFBB", "#E7B800") ) + scale_y_continuous(expand = expansion(mult = c(0.05, 0.10))) # Add p-values onto the box plots # label can be "p.format" or "p.adj.format" bxp + geom_pwc( aes(group = supp), tip.length = 0, method = "t_test", label = "p.format" ) # Show adjusted p-values and significance levels # Hide ns (non-significant) bxp + geom_pwc( aes(group = supp), tip.length = 0, method = "t_test", label = "{p.adj.format}{p.adj.signif}", p.adjust.method = "bonferroni", p.adjust.by = "panel", hide.ns = TRUE ) # Complex cases #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # 1. Add p-values of OJ vs VC at each dose group bxp.complex <- bxp + geom_pwc( aes(group = supp), tip.length = 0, method = "t_test", label = "p.adj.format", p.adjust.method = "bonferroni", p.adjust.by = "panel" ) # 2. Add pairwise comparisons between dose levels # Nudge up the brackets by 20% of the total height bxp.complex <- bxp.complex + geom_pwc( method = "t_test", label = "p.adj.format", p.adjust.method = "bonferroni", bracket.nudge.y = 0.2 ) # 3. Display the plot bxp.complex # Three groups by x position #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Simple plots #_____________________________________ # Box plots with p-values bxp <- ggboxplot( df, x = "supp", y = "len", fill = "dose", palette = "npg" ) bxp + geom_pwc( aes(group = dose), tip.length = 0, method = "t_test", label = "p.adj.format", bracket.nudge.y = -0.08 ) + scale_y_continuous(expand = expansion(mult = c(0, 0.1))) # Bar plots with p-values bp <- ggbarplot( df, x = "supp", y = "len", fill = "dose", palette = "npg", add = "mean_sd", position = position_dodge(0.8) ) bp + geom_pwc( aes(group = dose), tip.length = 0, method = "t_test", label = "p.adj.format", bracket.nudge.y = -0.08 ) + scale_y_continuous(expand = expansion(mult = c(0, 0.1)))
Add regression line equation and R^2 to a ggplot. Regression
model is fitted using the function lm
.
stat_regline_equation( mapping = NULL, data = NULL, formula = y ~ x, label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, output.type = "expression", geom = "text", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
stat_regline_equation( mapping = NULL, data = NULL, formula = y ~ x, label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, output.type = "expression", geom = "text", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
formula |
a formula object |
label.x.npc , label.y.npc
|
can be
If too short they will be recycled. |
label.x , label.y
|
|
output.type |
character One of "expression", "latex" or "text". |
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
other arguments to pass to |
x position for left edge
y position near upper edge
equation for the fitted polynomial as a character string to be parsed
of the fitted model as a character string to be parsed
Adjusted of the fitted model as a character string
to be parsed
AIC for the fitted model.
BIC for the fitted model.
Set to zero to override the default of the "text" geom.
the source code of the function stat_regline_equation()
is
inspired from the code of the function stat_poly_eq()
(in ggpmisc
package).
# Simple scatter plot with correlation coefficient and # regression line #:::::::::::::::::::::::::::::::::::::::::::::::::::: ggscatter(mtcars, x = "wt", y = "mpg", add = "reg.line") + stat_cor(label.x = 3, label.y = 34) + stat_regline_equation(label.x = 3, label.y = 32) # Groupped scatter plot #:::::::::::::::::::::::::::::::::::::::::::::::::::: ggscatter( iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", palette = "jco", add = "reg.line" ) + facet_wrap(~Species) + stat_cor(label.y = 4.4) + stat_regline_equation(label.y = 4.2) # Polynomial equation #:::::::::::::::::::::::::::::::::::::::::::::::::::: # Demo data set.seed(4321) x <- 1:100 y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4) my.data <- data.frame(x, y, group = c("A", "B"), y2 = y * c(0.5,2), block = c("a", "a", "b", "b")) # Fit polynomial regression line and add labels formula <- y ~ poly(x, 3, raw = TRUE) p <- ggplot(my.data, aes(x, y2, color = group)) + geom_point() + stat_smooth(aes(fill = group, color = group), method = "lm", formula = formula) + stat_regline_equation( aes(label = paste(..eq.label.., ..adj.rr.label.., sep = "~~~~")), formula = formula ) + theme_bw() ggpar(p, palette = "jco")
# Simple scatter plot with correlation coefficient and # regression line #:::::::::::::::::::::::::::::::::::::::::::::::::::: ggscatter(mtcars, x = "wt", y = "mpg", add = "reg.line") + stat_cor(label.x = 3, label.y = 34) + stat_regline_equation(label.x = 3, label.y = 32) # Groupped scatter plot #:::::::::::::::::::::::::::::::::::::::::::::::::::: ggscatter( iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", palette = "jco", add = "reg.line" ) + facet_wrap(~Species) + stat_cor(label.y = 4.4) + stat_regline_equation(label.y = 4.2) # Polynomial equation #:::::::::::::::::::::::::::::::::::::::::::::::::::: # Demo data set.seed(4321) x <- 1:100 y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4) my.data <- data.frame(x, y, group = c("A", "B"), y2 = y * c(0.5,2), block = c("a", "a", "b", "b")) # Fit polynomial regression line and add labels formula <- y ~ poly(x, 3, raw = TRUE) p <- ggplot(my.data, aes(x, y2, color = group)) + geom_point() + stat_smooth(aes(fill = group, color = group), method = "lm", formula = formula) + stat_regline_equation( aes(label = paste(..eq.label.., ..adj.rr.label.., sep = "~~~~")), formula = formula ) + theme_bw() ggpar(p, palette = "jco")
Create a star plot by drawing segments from group centroid to each points.
stat_stars( mapping = NULL, data = NULL, geom = "segment", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
stat_stars( mapping = NULL, data = NULL, geom = "segment", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
other arguments to pass to |
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) # Scatter plot with ellipses and group mean points ggscatter(df, x = "wt", y = "mpg", color = "cyl", shape = "cyl", mean.point = TRUE, ellipse = TRUE)+ stat_stars(aes(color = cyl))
# Load data data("mtcars") df <- mtcars df$cyl <- as.factor(df$cyl) # Scatter plot with ellipses and group mean points ggscatter(df, x = "wt", y = "mpg", color = "cyl", shape = "cyl", mean.point = TRUE, ellipse = TRUE)+ stat_stars(aes(color = cyl))
Add Welch one-way ANOVA test p-values to a ggplot, such as box blots, dot plots and stripcharts.
stat_welch_anova_test( mapping = NULL, data = NULL, group.by = NULL, label = "{method}, p = {p.format}", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, step.increase = 0.1, p.adjust.method = "holm", significance = list(), geom = "text", position = "identity", na.rm = FALSE, show.legend = FALSE, inherit.aes = TRUE, parse = FALSE, ... )
stat_welch_anova_test( mapping = NULL, data = NULL, group.by = NULL, label = "{method}, p = {p.format}", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, step.increase = 0.1, p.adjust.method = "holm", significance = list(), geom = "text", position = "identity", na.rm = FALSE, show.legend = FALSE, inherit.aes = TRUE, parse = FALSE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
group.by |
(optional) character vector specifying the grouping variable; it should be used only for grouped plots. Possible values are :
|
label |
the column containing the label (e.g.: label = "p" or label =
"p.adj"), where |
label.x.npc , label.y.npc
|
can be
|
label.x , label.y
|
|
step.increase |
numeric vector with the increase in fraction of total height for every additional comparison to minimize overlap. |
p.adjust.method |
method for adjusting p values (see
|
significance |
a list of arguments specifying the signifcance cutpoints
and symbols. For example, In other words, we use the following convention for symbols indicating statistical significance:
|
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
parse |
If TRUE, the labels will be parsed into expressions and displayed
as described in |
... |
other arguments passed to the function |
statistic: the value of the test statistic (F-value)
DFn: Degrees of Freedom in the numerator (i.e. DF effect)
DFd: Degrees of Freedom in the denominator (i.e., DF error)
p: p-value.
p.adj: Adjusted p-values.
p.signif: P-value significance.
p.adj.signif: Adjusted p-value significance.
p.format: Formated p-value.
p.adj.format: Formated adjusted p-value.
n: number of samples.
# Data preparation #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Transform `dose` into factor variable df <- ToothGrowth df$dose <- as.factor(df$dose) # Add a random grouping variable set.seed(123) df$group <- sample(factor(rep(c("grp1", "grp2", "grp3"), 20))) df$len <- ifelse(df$group == "grp2", df$len+2, df$len) df$len <- ifelse(df$group == "grp3", df$len+7, df$len) head(df, 3) # Basic boxplot #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a basic boxplot # Add 5% and 10% space to the plot bottom and the top, respectively bxp <- ggboxplot(df, x = "dose", y = "len") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add the p-value to the boxplot bxp + stat_welch_anova_test() # Change the label position # Using coordinates in data units bxp + stat_welch_anova_test(label.x = "1", label.y = 10, hjust = 0) # Format the p-value differently custom_p_format <- function(p) { rstatix::p_format(p, accuracy = 0.0001, digits = 3, leading.zero = FALSE) } bxp + stat_welch_anova_test( label = "Welch Anova, italic(p) = {custom_p_format(p)}{p.signif}" ) # Show a detailed label in italic bxp + stat_welch_anova_test(label = "as_detailed_italic") # Faceted plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a ggplot facet bxp <- ggboxplot(df, x = "dose", y = "len", facet.by = "supp") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add p-values bxp + stat_welch_anova_test() # Grouped plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bxp2 <- ggboxplot(df, x = "group", y = "len", color = "dose", palette = "npg") # For each x-position, computes tests between legend groups bxp2 + stat_welch_anova_test(aes(group = dose), label = "p = {p.format}{p.signif}") # For each legend group, computes tests between x variable groups bxp2 + stat_welch_anova_test(aes(group = dose, color = dose), group.by = "legend.var")
# Data preparation #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Transform `dose` into factor variable df <- ToothGrowth df$dose <- as.factor(df$dose) # Add a random grouping variable set.seed(123) df$group <- sample(factor(rep(c("grp1", "grp2", "grp3"), 20))) df$len <- ifelse(df$group == "grp2", df$len+2, df$len) df$len <- ifelse(df$group == "grp3", df$len+7, df$len) head(df, 3) # Basic boxplot #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a basic boxplot # Add 5% and 10% space to the plot bottom and the top, respectively bxp <- ggboxplot(df, x = "dose", y = "len") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add the p-value to the boxplot bxp + stat_welch_anova_test() # Change the label position # Using coordinates in data units bxp + stat_welch_anova_test(label.x = "1", label.y = 10, hjust = 0) # Format the p-value differently custom_p_format <- function(p) { rstatix::p_format(p, accuracy = 0.0001, digits = 3, leading.zero = FALSE) } bxp + stat_welch_anova_test( label = "Welch Anova, italic(p) = {custom_p_format(p)}{p.signif}" ) # Show a detailed label in italic bxp + stat_welch_anova_test(label = "as_detailed_italic") # Faceted plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Create a ggplot facet bxp <- ggboxplot(df, x = "dose", y = "len", facet.by = "supp") + scale_y_continuous(expand = expansion(mult = c(0.05, 0.1))) # Add p-values bxp + stat_welch_anova_test() # Grouped plots #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bxp2 <- ggboxplot(df, x = "group", y = "len", color = "dose", palette = "npg") # For each x-position, computes tests between legend groups bxp2 + stat_welch_anova_test(aes(group = dose), label = "p = {p.format}{p.signif}") # For each legend group, computes tests between x variable groups bxp2 + stat_welch_anova_test(aes(group = dose, color = dose), group.by = "legend.var")
Create easily a customized text grob (graphical object). Wrapper around
textGrob
.
text_grob( label, just = "centre", hjust = NULL, vjust = NULL, rot = 0, color = "black", face = "plain", size = NULL, lineheight = NULL, family = NULL, ... )
text_grob( label, just = "centre", hjust = NULL, vjust = NULL, rot = 0, color = "black", face = "plain", size = NULL, lineheight = NULL, family = NULL, ... )
label |
A character or expression vector. Other
objects are coerced by |
just |
The justification of the text
relative to its (x, y) location. If there are two values, the first
value specifies horizontal justification and the second value specifies
vertical justification. Possible string values are: |
hjust |
A numeric vector specifying horizontal justification.
If specified, overrides the |
vjust |
A numeric vector specifying vertical justification.
If specified, overrides the |
rot |
The angle to rotate the text. |
color |
text font color. |
face |
font face. Allowed values include one of |
size |
font size (e.g.: size = 12) |
lineheight |
line height (e.g.: lineheight = 2). |
family |
font family. |
... |
other arguments passed to textGrob. |
a text grob.
text <- paste("iris data set gives the measurements in cm", "of the variables sepal length and width", "and petal length and width, respectively,", "for 50 flowers from each of 3 species of iris.", "The species are Iris setosa, versicolor, and virginica.", sep = "\n") # Create a text grob tgrob <- text_grob(text, face = "italic", color = "steelblue") # Draw the text as_ggplot(tgrob)
text <- paste("iris data set gives the measurements in cm", "of the variables sepal length and width", "and petal length and width, respectively,", "for 50 flowers from each of 3 species of iris.", "The species are Iris setosa, versicolor, and virginica.", sep = "\n") # Create a text grob tgrob <- text_grob(text, face = "italic", color = "steelblue") # Draw the text as_ggplot(tgrob)
theme_pubr(): Create a publication ready theme
theme_pubclean(): a clean theme without axis lines, to direct more attention to the data.
labs_pubr(): Format only plot labels to a publication ready style
theme_classic2(): Create a classic theme with axis lines.
clean_theme(): Remove axis lines, ticks, texts and titles.
clean_table_theme():
Clean the the theme of a table, such as those created by
ggsummarytable()
.
theme_pubr( base_size = 12, base_family = "", border = FALSE, margin = TRUE, legend = c("top", "bottom", "left", "right", "none"), x.text.angle = 0 ) theme_pubclean(base_size = 12, base_family = "", flip = FALSE) labs_pubr(base_size = 14, base_family = "") theme_classic2(base_size = 12, base_family = "") clean_theme() clean_table_theme()
theme_pubr( base_size = 12, base_family = "", border = FALSE, margin = TRUE, legend = c("top", "bottom", "left", "right", "none"), x.text.angle = 0 ) theme_pubclean(base_size = 12, base_family = "", flip = FALSE) labs_pubr(base_size = 14, base_family = "") theme_classic2(base_size = 12, base_family = "") clean_theme() clean_table_theme()
base_size |
base font size |
base_family |
base font family |
border |
logical value. Default is FALSE. If TRUE, add panel border. |
margin |
logical value. Default is TRUE. If FALSE, reduce plot margin. |
legend |
character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). Default is "top" side position. to remove the legend use legend = "none". Legend position can be also specified using a numeric vector c(x, y). In this case it is possible to position the legend inside the plotting area. x and y are the coordinates of the legend box. Their values should be between 0 and 1. c(0,0) corresponds to the "bottom left" and c(1,1) corresponds to the "top right" position. For instance use legend = c(0.8, 0.2). |
x.text.angle |
Rotation angle of x axis tick labels. Default value is 0. Use 90 for vertical text. |
flip |
logical. If TRUE, grid lines are added to y axis instead of x axis. |
p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point(aes(color = gear)) # Default plot p # Use theme_pubr() p + theme_pubr() # Format labels p + labs_pubr()
p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point(aes(color = gear)) # Default plot p # Use theme_pubr() p + theme_pubr() # Format labels p + labs_pubr()
Create a ggplot with transparent background.
theme_transparent(base_size = 12, base_family = "")
theme_transparent(base_size = 12, base_family = "")
base_size |
base font size |
base_family |
base font family |
# Create a scatter plot sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", palette = "jco", size = 3, alpha = 0.6) sp # Transparent theme sp + theme_transparent()
# Create a scatter plot sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", palette = "jco", size = 3, alpha = 0.6) sp # Transparent theme sp + theme_transparent()