This vignette covers changes between versions 0.2.4 and 0.2.5 for specifiyng weights in the log-rank comparisons done in
ggsurvplot()
.
As it is stated in the literature, the Log-rank test for comparing survival (estimates of survival curves) in 2 groups (A and B) is based on the below statistic
$$LR = \frac{U^2}{V} \sim \chi(1),$$
where $$U = \sum_{i=1}^{T}w_{t_i}(o_{t_i}^A-e_{t_i}^A), \ \ \ \ \ \ \ \ V = Var(U) = \sum_{i=1}^{T}(w_{t_i}^2\frac{n_{t_i}^An_{t_i}^Bo_{t_i}(n_{t_i}-o_{t_i})}{n_{t_i}^2(n_{t_i}-1)})$$ and
also remember about few notes
$$e_{t_i}^A = n_{t_i}^A \frac{o_{t_i}}{n_{t_i}}, \ \ \ \ \ \ \ \ \ \ e_{t_i}^B = n_{t_i}^B \frac{o_{t_i}}{n_{t_i}},$$ etiA + etiB = otiA + otiB
that’s why we can substitute group A with B in U and receive same results.
Regular Log-rank comparison uses wti = 1
but many modifications to that approach have been proposed. The most
popular modifications, called weighted Log-rank tests, are available in
?survMisc::comp
n
Gehan and Breslow proposed to use wti = nti
(this is also called generalized Wilcoxon),srqtN
Tharone and Ware proposed to use $w_{t_i} = \sqrt{n_{t_i}}$,S1
Peto-Peto’s modified survival estimate $w_{t_i} = S1({t_i}) =
\prod_{i=1}^{T}(1-\frac{e_{t_i}}{n_{t_i}+1})$,S2
modified Peto-Peto (by Andersen) $w_{t_i} = S2({t_i}) =
\frac{S1({t_i})n_{t_i}}{n_{t_i}+1}$,FH
Fleming-Harrington wti = S(ti)p(1 − S(ti))q.Watch out for
FH
as I submitted an info on survMisc repository where I think their mathematical notation is misleading for Fleming-Harrington.
The regular Log-rank test is sensitive to detect differences in late
survival times, where Gehan-Breslow and Tharone-Ware propositions might
be used if one is interested in early differences in survival times.
Peto-Peto modifications are also useful in early differences and are
more robust (than Tharone-Whare or Gehan-Breslow) for situations where
many observations are censored. The most flexible is Fleming-Harrington
method for weights, where high p
indicates detecting early
differences and high q
indicates detecting differences in
late survival times. But there is always an issue on how to detect
p
and q
.
Remember that test selection should be performed at the research design level! Not after looking in the dataset.
After preparing a functionality for this GitHub’s issue Other tests than log-rank for testing survival curves and Log-rank test for trend we are now able to compute p-values for various Log-rank test in survminer package. Let as see below examples on executing all possible tests.
Gehan A. A Generalized Wilcoxon Test for Comparing Arbitrarily Singly-Censored Samples. Biometrika 1965 Jun. 52(1/2):203-23.
Tarone RE, Ware J 1977 On Distribution-Free Tests for Equality of Survival Distributions. Biometrika;64(1):156-60.
Peto R, Peto J 1972 Asymptotically Efficient Rank Invariant Test Procedures. J Royal Statistical Society 135(2):186-207.
Fleming TR, Harrington DP, O’Sullivan M 1987 Supremum Versions of the Log-Rank and Generalized Wilcoxon Statistics. J American Statistical Association 82(397):312-20.
Billingsly P 1999 Convergence of Probability Measures. New York: John Wiley & Sons.